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Preface
This	is	the	second	in	a	series	of	four	volumes,	all	written	at	an	elementary
calculus	level.	The	complete	course	covers	the	most	important	areas	of	classical
physics,	such	as	mechanics,	thermodynamics,	statistical	mechanics,
electromagnetism,	waves	and	optics.	This	second	volume	deals	with	fluid
mechanics,	thermodynamics	and	statistical	mechanics.

The	laws	of	Physics,	and,	more	generally,	of	Nature,	are	written	in	the
language	of	mathematics.	The	reader	is	assumed	to	have	previous	knowledge	of
the	basic	concepts	of	calculus:	vectors,	functions,	limits	and	the	derivative	and
integration	operations.

Physics	is	an	experimental	science,	meaning	that	it	is	based	on	the
experimental	method,	which	was	developed	by	Galileo	Galilei	in	the	seventeenth
century.	He	taught	us,	in	particular,	that	to	try	to	understand	a	phenomenon,	one
must	simplify	the	relevant	working	conditions	as	thoroughly	as	possible,
understanding	which	aspects	are	secondary	and	eliminating	them	as	far	as
possible.	The	understanding	process	is	not	immediate,	but	rather,	it	proceeds	by
trial	and	error,	through	a	series	of	experiments,	which	might	lead,	with	a	bit	of
fortune	and	a	lot	of	thinking,	to	the	discovery	of	the	governing	laws.	Induction
process	of	the	laws	of	physics	goes	back	from	the	observed	effects	to	their
causes,	and,	as	such,	cannot	be	purely	logical.	Once	a	physical	law	is	found,	it	is
necessary	to	consider	all	its	possible	consequences.	This	is	now	a	deductive
process,	which	is	logical	and	similar	to	the	mathematical	one.	Each	of	the
consequences,	the	predictions,	of	the	law	must	then	be	experimentally	verified.
If	only	one	prediction	is	found	to	be	false	by	the	experiment,	even	if	thousands
of	others	have	been	found	to	be	true,	it	is	enough	to	prove	that	the	law	is	false	or,
better	yet,	to	show	the	limits	of	its	validity.	This	implies	that	we	can	never	be
completely	sure	that	a	law	is	true;	indeed,	the	number	of	its	possible	predictions
is	unlimited,	and	in	any	historical	moment,	a	number	of	them	may	be
uncontrolled.	However,	this	is	the	price	we	must	pay	in	choosing	the
experimental	method,	which	has	allowed	humankind	to	advance	much	further	in
the	last	four	centuries	than	in	all	the	preceding	millennia.

Thermodynamics	and	statistical	mechanics	are	amongst	the	great	intellectual
constructions	of	Physics.	Their	laws	are	well	established	as	well	as	the	limits	of
their	validity.	Consequently,	it	can	be	exposed	in	an	axiomatic	way,	as	a	chapter
of	mathematics.	We	can	start	from	a	set	of	propositions	whose	axioms	are
assumed	to	be	true	by	definition,	and	deduce	from	them	a	number	of	theorems
using	only	logics,	as	the	Euclidean	geometry	theorems	are	deduced	from	the



Euclid	postulates.
We	shall	not	follow	this	path.	The	reason	for	this	is	that,	while	it	allows	a

shorter	and	quicker	treatment	and	is	also	logically	more	satisfactory	for	some,	it
also	hides	the	inductive	historical	trial	and	error	process	through	which	the
postulates	and	the	general	laws	have	been	discovered.	These	are	arrival	rather
than	starting	points.	This	path	has	been	complex,	laborious,	and	highly
nonlinear.	Errors	have	been	made,	hypotheses	have	been	advanced	that	turned
out	to	be	false,	but	finally	the	laws	were	discovered.	The	knowledge	of	at	least	a
few	of	the	most	important	aspects	of	this	process	is	indispensable	for	developing
the	mental	capabilities	that	are	necessary	to	anybody	contributing	to	the	progress
of	natural	sciences,	whether	they	pursue	applications	or	teach	them.	In	any	case,
we	shall	mention	the	names	of	those	that	contributed	most	to	the	achievements
that	we	will	be	discussing,	along	with	the	date	of	the	discovery	and,	the	first	time
we	meet	him,	the	life	span	of	the	author.

A	large	fraction	of	the	book	deals	with	the	physics	of	fluids.	We	shall	start
with	their	mechanical	properties,	continue	with	their	thermodynamic	aspects,
and	end	up	with	the	statistical	mechanics	of	their	molecular	structure.	In	Chap.	1
,	we	shall	study	the	statics	and	the	dynamics	of	fluids,	called	hydrostatics	and
hydrodynamics,	respectively.	This	is,	rigorously	speaking,	a	chapter	of
mechanics,	but	fluids	are	much	more	complex	mechanical	systems	than,	for
example,	the	rigid	bodies	studied	in	the	first	volume.	As	a	matter	of	fact,	fluids
have	an	infinite	number	of	degrees	of	freedom.	We	shall	describe	several	aspects
of	the	complex	fluid	phenomenology	aimed	at	understanding	the	physics	rather
than	the	mathematics.	The	latter	requires	a	knowledge	of	partial	differential
equations	that	is	beyond	the	level	of	this	course.

In	the	first	volume,	we	learned	the	fundamental	conservation	laws	of	energy,
linear	and	angular	momentum.	We	also	saw	that	the	total	mechanical	energy	of
an	isolated	system	is	not	always	conserved.	It	is	not	conserved	in	the	presence	of
nonconservative	forces.	We	had	anticipated	then,	however,	that	the	apparent
nonconservation	of	energy	is	due	to	having	neglected	to	include	all	the	forms	of
energy	in	the	balance.	In	the	second	chapter	of	this	volume,	we	shall	see	that,
indeed,	energy	is	always	conserved.	Thermodynamics	teaches	us	how	one	must
take	into	account	all	the	possible	forms	of	energy	exchange.	Two	systems	can
exchange	energy	not	only	in	the	form	of	work	but	also	in	the	form	of	heat.
Beyond	the	mechanical	energy,	we	must	also	include	the	internal,	or	thermal,
energy	in	the	balance.	The	first	law	of	thermodynamics	is	the	law	of	energy
conservation.

Thermodynamics	deals	with	systems	that	are	extremely	complex	from	a
mechanical	point	of	view.	In	order	to	define	the	mechanical	state	of	a	fluid,	for



example,	one	should	know	the	positions	and	velocities	of	all	its	molecules.	This
is	not	possible.	Thermodynamics	describes	the	state	of	the	system	under	study
with	a	small	number	of	global	variables,	like	volume,	pressure,	density	and
temperature,	and	the	processes	from	one	state	to	another	considering	the	heat
and	work	exchanges.	In	Chap.	2	,	we	shall	study,	in	particular,	two	important
classes	of	thermodynamic	systems,	the	gases	and	the	solids.

The	second	law	of	thermodynamics,	discussed	in	Chap.	3	,	deals	with	the
irreversibility	of	natural	phenomena.	For	example,	if	two	bodies	at	different
temperature	are	brought	into	contact,	heat	passes	from	the	hotter	to	the	colder
one;	the	temperature	of	the	former	decreases,	while	that	of	the	latter	increases.
The	opposite	process	never	happens	spontaneously.	As	another	example,	if	we
drop	a	stone	from	a	certain	height,	it	stops	when	it	hits	the	ground	and	its
temperature	increases.	It	never	happens	that	a	stone	on	the	ground	jumps	up
while	cooling.	We	shall	learn	how	entropy,	a	fundamental	quantity	of
thermodynamics,	rules	the	irreversibility.

In	Chap.	4	,	we	shall	apply	the	laws	of	thermodynamics	to	several	relatively
simple	thermodynamic	systems.	After	having	given	some	information	on	the
structure	of	matter	and	on	its	aggregation	phases,	we	shall	study	the	conditions
for	equilibrium	between	phases	(liquid	and	vapor,	liquid	and	solid,	solid	and
vapor),	the	transitions	between	the	phases	and	the	surface	phenomena.

In	the	final	two	chapters,	we	shall	look	at	the	thermodynamic	processes	from
the	microscopic	point	of	view,	namely	considering	that	the	bodies	are	made	of	an
enormous	number	of	molecules.	We	shall	study	statistically	the	kinematic
variables,	namely	their	probability	distributions	and	their	average	values.	In	this
way,	we	shall	learn	that	(classical)	thermodynamics	laws	are	not	independent	of
(classical)	mechanics,	but	rather	logical	consequences	of	same.	Historically,	the
most	important	steps	forward	in	physics	happen	when	fields	that	had	been
separated	become	unified	in	a	single	theory.	This	had	been	the	case	for	terrestrial
and	heavenly	mechanics	with	Galilei	and	Newton	in	the	seventeenth	century,	as
we	saw	in	the	first	volume.	Similarly,	thermodynamics	(and	chemistry	as	a	part
of	it)	was	unified	with	mechanics	in	the	second	half	of	the	nineteenth	century	by,
mainly,	James	Clerk	Maxwell	and	Ludwig	Boltzmann.	The	study	of	statistical
mechanics	will	enlighten	and	give	deep	physical	meaning	to	several	findings
within	thermodynamics.	It	shall	also	lead	us	to	discover	the	limits	of	classical
mechanics,	the	limits	at	which	quantum	physics	takes	over.

Each	chapter	of	the	book	starts	with	a	brief	introduction,	to	give	the	reader	a
preliminary	idea	of	the	arguments	he/she	will	find.	There	is	no	need	to	fully
understand	these	introductions	at	the	first	reading,	as	all	the	arguments	are	fully
developed	in	the	subsequent	pages.



1.

2.

3.

At	the	end	of	each	chapter,	the	reader	will	find	a	number	of	queries,	through
which	to	check	his/her	level	of	understanding	of	the	arguments	put	forward	in
the	chapter.	The	difficulty	of	the	queries	is	variable;	some	of	them	are	very
simple,	some	more	complex,	a	few	are	true	numerical	problems.	On	the	other
hand,	the	book	does	not	contain	a	sequence	of	full	problems,	owing	to	the
existence	of	very	good	textbooks	dedicated	specifically	to	those.

The	answers	to	the	large	majority	of	the	queries	are	included.	However,	the
solution	to	numerical	problems	(without	looking	at	the	answers)	is	mental
gymnastics	that	are	absolutely	necessary	for	understanding	the	subject.	Only	the
effort	to	apply	concepts	one	has	learned	to	specific	cases	will	allow	the	reader	to
master	them	completely.	The	reader	should	be	conscious	of	the	fact	that	the
solution	of	numerical	problems	requires	mental	mechanisms	different	from	those
engaged	in	understanding	a	text.	The	latter,	indeed,	has	already	been	organized
by	the	author;	solving	a	problem	requires	much	more	active	initiative	from	the
student,	a	creative	activity	that	is	needed	for	advancing	scientific	knowledge	and
its	technical	applications	as	well.	Consequently,	the	student	should	work	on	an
exercise	alone,	without	looking	at	the	solution	in	the	book.	Even	failed	attempts
to	reach	the	solution	autonomously,	provided	they	are	undertaken	with	sufficient
persistence,	yield	important	returns,	because	they	aid	in	the	development	of
processing	skills.	If,	after	several	failed	attempts,	the	solution	has	not	yet	been
reached,	it	is	a	better	practice	to	abandon	the	exercise	momentarily,	rather	than
looking	at	the	solution,	instead	going	on	to	another	exercise	and	coming	back	to
the	previous	one	later.

The	following	working	scheme	is	methodologically	advisable:

Examine	the	conditions	posed	by	the	problem	in	depth.	If	it	is	appropriate,
make	a	drawing	containing	the	essential	elements.

	
Solve	the	problem	using	letters	in	the	formulas,	not	numbers,	developing
them	up	to	the	point	when	the	requested	quantities	are	expressed	in	terms	of
the	known	ones.	Only	then	should	you	put	numbers	into	the	formulas.

	
Control	the	correctness	of	the	physical	dimensions.

	



4.

5.

When	necessary,	transform	all	the	data	in	the	same	system	of	units	(prefer	SI).
Use	the	scientific	notation,	for	example,	2.5	x	10	3	rather	than	2500,	2.5	x	10	−3
rather	than	0.0025.	In	general,	two	or	three	significant	figures	are	enough.

	
Once	you	have	the	final	result,	always	verify	if	it	is	reasonable.	For	example,
the	mass	of	a	molecule	cannot	turn	out	to	be	30	mg,	the	speed	of	a	bullet
cannot	be	10	6	m/s,	the	distance	between	two	towns	cannot	be	25	mm,	etc.
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Symbols

Table	1 Symbols	for	the	principal	quantities

Acceleration a	,	a	s
Absolute	temperature T
Angular	acceleration α	,	α
Angular	frequency ω
Angular	momentum l	,	L
Angular	velocity ω
Atmospheric	pressure p	a
Avogadro	number N	A
Boltzmann	constant k	B
Boundary	layer	thickness δ
Cross	section σ
Debye	temperature θ	D
Density	(mass) ρ
Density	(numerical) n	p
Diameter D
Diffusion	coefficient D
Drag	coefficient C	D
Efficiency	(thermic	engine) η
Efficiency	(refrigerator) ξ
Electric	charge	(elementary) q	e
Enthalpy H
Entropy S
Force F
Frequency ν
Gas	constant R
Gas	specific	heats	ratio γ
Gravitational	field G
Gravity	acceleration g
Heat Q
Heat	capacity C
Heat	flux	density Φ	Q
Internal	energy U



Isothermal	compressibility κ
Latent	heat	vaporization Q	vap
Kinetic	energy U	K
Mass m	,	M
Mass	flow	rate Q	m
Mass	flux	density	(diffusion) Φ	c
Mean	free	path l
Mechanical	equivalent	of	heat J
Molar	heat C	,	C	p	,	C	V
Molar	volume V	m
Molecule	kinetic	energy	flux	density Φ	T
Moment	(mechanical) M
Momentum p
Momentum	flux	density Φ	p
Normal	(to	a	surface)	unit	vector n
Number	density n	p
Number	of	moles n
Plane	angle θ
Polar	angle θ	,	ϕ
Polar	coordinates	(space) ρ	,	θ	,	ϕ
Position	vector r
Potential	energy U	p
Power w
Pressure p
Radius R	,	r
Reduced	mass μ
Reynolds	number Re
Shear	stress τ
Specific	heat c	,	c	p	,	c	V
Spring	constant κ
Surface S	,	Σ
Surface	tension τ
Temperature θ
Thermal	compressibility κ
Thermal	conductivity κ
Thermal	diffusivity χ
Time t



Total	(mechanical)	energy U	tot
Weight F	w
Work W
Mean	value,	of	x

Angular	velocity ω	,	Ω
Velocity	of	light	(in	vacuum) c
Velocity v	,	υ
Unit	vector	of	v u	υ
Unit	vectors	of	the	axes i	,	j	,	k
Van	der	Waals	parameters a	,	b
Viscosity	(dynamical) η
Viscosity	(kinematic) ν
Velocity	flux	density Φ	υ
Velocity,	root	mean	square υ	rms
Volume V
Volumetric	flow	rate Q	V
Volumetric	thermal	expansion	coefficient α

Table	2 Base	units	in	the	SI

Quantity Unit Symbol
Length meter/metre m
Mass kilogram kg
Time second s
Current	intensity ampere A
Thermodynamic	temperature kelvin K
Amount	of	substance mole mol
Luminous	intensity candela cd

Table	3 Decimal	multiples	and	submultiples	of	the	units

Factor Prefix Symbol Factor Prefix Symbol

10	24 yotta Y 10	−1 deci d

10	21 zetta Z 10	−2 centi c

10	18 exa E 10	−3 milli m

10	15 peta P 10	−6 micro µ

10	12 tera T 10	−9 nano n

10	9 giga G 10	−12 pico p



10	6 mega M 10	−15 femto f

10	3 kilo k 10	−18 atto a

10	2 hecto h 10	−21 zepto z

10 deka da 10	−24 yocto y

Table	4 Fundamental	constants

Quantity Symbol Value Uncertainty
Speed	of	light	in	vacuum c 299,792,458	m	s	−1 Defined

Elementary	charge q	e 1.60217653(14)	×	10	−19	C 85	ppb

Electron	mass m	e 9.1093826(16)	×	10	−31	kg 170	ppb

Proton	mass m	p 1.67262171(29)	×	10	−27		kg 170	ppb

Newton	constant G	N 6.67384(80)	×	10	−11		m	3		kg	−1		s	−2 120	ppm

Gas	constant R 8.3144598(48)	J	mol	−1		K	−1 580	ppb

Water	triple	point	temp. 	 273.16	K Defined
Avogadro	number N	A 6.0221415(10)	×	10	23		mole	−1 170	ppb

Boltzmann	constant k	B 1.3806505(24)	×	10	−23		J	K	−1 1.8	ppm

Table	5 Greek	alphabet

alpha α Α iota ι Ι rho ρ Ρ
beta β Β kappa κ Κ sigma σ,	ς Σ
gamma γ Γ lambda λ Λ tau τ Τ
delta δ Δ mu μ Μ upsilon υ Υ,	
epsilon ε Ε nu ν Ν phi ϕ,	φ Φ
zeta ζ Ζ xi ξ Ξ chi χ Χ
eta η Η omicron ο Ο psi ψ Ψ
theta θ,	ϑ Θ pi π Π omega ω Ω
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Both	liquids	and	gases	are	called	fluids.	As	opposed	to	solids,	fluid	substances
do	not	have	a	definite	shape.	Liquids	do	have	a	definite	volume,	as,	in	a	very
good	approximation,	they	are	not	compressible.	On	the	other	hand,	gases	occupy
all	the	volume	at	their	disposal	and	can	be	easily	compressed.

In	this	chapter,	we	shall	study	the	motions	of	fluids,	which	may	be	very
complex.	In	the	first	volume	of	the	course,	we	studied	the	motions	of	material
points,	which	have	three	degrees	of	freedom,	and	of	rigid	bodies,	which	have
six.	Fluids,	on	the	other	hand,	have	an	infinite	number	of	degrees	of	freedom.

In	the	first	five	sections	of	the	chapter,	we	shall	study	fluids	at	rest,	in
equilibrium	conditions.	This	chapter	of	physics	is	called	hydrostatics.	We	shall
see,	in	particular,	examples	of	equilibrium	in	the	fields	of	weight	and	centrifugal
(pseudo)	force.

We	shall	then	introduce	the	concept	of	viscosity,	which	is	the	internal	friction
in	fluids	in	motion,	and	discuss	its	dynamical	effects.	Its	physical	meaning,	from
the	microscopic	point	of	view,	will	be	studied	in	Chap.	6.	In	Sects.	1.7–1.10,	we
shall	consider	the	motions	of	an	idealized	system,	the	ideal	fluid,	which	is	a	fluid
that	is	incompressible	and	with	zero	viscosity.	Even	if	such	a	fluid	does	not	exist,
under	certain	conditions,	real	fluids	(even	gases,	in	some	instances)	behave
approximately	like	that	ideal	one.

In	the	last	four	sections,	we	shall	consider	real	fluids.	We	shall	see	how	the
presence	of	viscosity	often	radically	changes	the	flow.	Next,	we	shall	consider
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the	flow	in	cylindrical	pipes	and	its	different	regimes,	with	the	laminar,	ordered
one	being	examined	in	Sect.	1.11,	and	the	chaotic,	turbulent	one	in	Sect.	1.12.
Following	that,	we	shall	study	the	flow	of	a	fluid	around	a	body	(equivalent	to
the	motion	of	a	body	in	a	fluid),	which	we	shall	take	to	be	spherical.	Again,	we
shall	start	with	the	laminar	regime	in	Sect.	1.13,	and	finally	move	to	the
turbulent	one	in	Sect.	1.14.	The	situations	rapidly	become	complicated.
However,	it	is	possible	to	employ	dimensional	arguments	to	analyze	the
principal	characteristics	of	complex	motions	in	a	simple	way.	We	shall	see,	in
particular,	how	the	different	regimes	are	characterized	by	different	values	of	a
dimensionless	quantity,	the	Reynolds	numbers.

1.1	 Fluids
Gases	and	liquids	are	collectively	called	fluids	.	As	opposed	to	solids,	fluids	do
not	have	a	proper	shape;	rather,	they	can	be	easily	deformed.	Liquids	and	gases
have	some	common	and	some	different	characteristics.	Let	us	start	with	the
latter.

The	volume	of	liquids	is	limited	by	sharp	surfaces,	both	those	in	contact	with
the	container	and	the	free	one.	The	density	of	liquids	is	much	larger	than	that	of
gases	under	the	usual	conditions.	For	example,	the	density	of	water	is	103	kg/m3,
while	the	density	of	air	at	normal	pressure	and	temperature	is	1.3	kg/m3.	Liquids
are	practically	incompressible,	as	are	solids,	and	we	have	said	that	their	volume
is	definite.	Contrastingly,	gases	can	be	easily	compressed	and	their	density
strongly	depends	both	on	pressure	and	temperature.

In	liquids,	the	distances	between	the	molecules	are	similar	to	their	diameters,
we	can	say	they	touch	each	other,	while	in	gases	they	are	much	larger.	In	both
cases,	however,	these	distances	are	very	small	compared	to	the	macroscopic
sizes.	For	example,	in	a	gas	like	nitrogen	or	oxygen,	under	normal	conditions,
the	mean	distance	between	molecules	is	a	few	nanometers.	We	can	also	posit
that	a	volume	of	0.1	mm	diameter	of	water	contains	along	the	order	of	1017
molecules	while	one	of	air	at	ambient	atmospheric	pressure	and	temperature
contains	1014	molecules.	We	see	that	we	can	consider	both	media	to	be
continuous	at	the	macroscopic	level	with	a	good	approximation.

Consider	the	infinitesimal	cubic	element	of	a	fluid	shown	in	Fig.	1.1.	Its
volume	is	dV	=	dx	dy	dz	and	its	mass	is	dm	=	ρ(x,	y,	z)dV,	where	ρ	is	the	fluid
density,	which	is	possibly	a	function	of	the	position.	The	forces	acting	on	the
element	can	be	divided	into	two	categories:



(1)

(2)

Fig.	1.1 Infinitesimal	element	in	a	fluid	and	forces	acting	on	it

the	volume	forces	d	F	(V)	(see	Fig.	1.1)	that	are	proportional	to	the	volume
and	the	mass	of	the	element.	Such	are	the	weight	and,	in	a	non-inertial
frame,	the	apparent	inertia	forces.	In	general,	we	can	say

	 (1.1)
where	G	generically	indicates	the	force	per	unit	mass	(it	is	the	gravity
acceleration	g	in	the	particular	case	of	the	weight).

	
the	surface	forces	d	F	(S)	(see	Fig.	1.1)	that	act	on	each	of	the	(geometrical)
faces	that	delimit	the	element	and	are	due	to	the	fluid	outside	the	element
touching	it	on	that	face.	As	we	shall	soon	see,	it	is	convenient	to	divide	the
surface	force	into	its	components	 	normal	and	 	tangent	to	the
surface.	The	magnitude	of	the	surface	force	is	proportional	to	the	area	of	the
surface	dS	through	which	it	acts.	The	force	per	unit	area	is	called	stress	.	The
normal	(to	the	surface)	and	shear	stresses	are

	 (1.2)

	
The	normal	stress	is	more	commonly	called	pressure	.	We	shall	immediately

show	that	the	normal	stress	at	a	given	point	in	the	fluid	is	independent	of	the
direction	in	which	it	exerts.	Pressure	is	a	scalar,	not	a	vector.	As	a	matter	of	fact,
we	have	anticipated	this	result	and	used	the	symbol	p	that	already	indicates	a
scalar.	Usually,	the	normal	stress	on	a	surface	is	directed	towards	the	inner	part
of	the	volume,	being	due	to	the	external	elements	pushing	on	it.	In	exceptional
situations,	it	may	happen	that	the	external	elements	attract	the	one	under



consideration.	Under	these	conditions,	the	pressure	is	negative.	We	shall
consider	an	example	of	that	in	Chap.	4,	while	in	this	one	we	assume	the	pressure
to	be	always	positive.

The	shear	stress	has,	constrastingly,	a	direction.	This	is,	by	definition,
parallel	to	the	surface	on	which	it	is	exerted.	If	the	fluid	is	in	equilibrium,	all	its
elements	are	by	definition	at	rest.	Considering	that	there	is	no	constraint
forbidding	contiguous	elements	from	shifting	one	over	the	other,	we	understand
that,	in	a	fluid	at	equilibrium,	all	the	shear	stresses	must	be	zero.	In	a	fluid,	the
equivalent	of	static	friction,	which	opposes	the	relative	motion	of	two	surfaces	of
solid	bodies	in	contact,	does	not	exist.	However,	as	we	shall	see,	if	the	liquid	is
in	motion,	such	as	water	in	a	duct,	for	example,	shear	stresses	are	present.

The	physical	dimensions	of	pressure	and	shear	stress	are	those	of	a	force
divided	by	a	surface.	The	unit	in	the	SI	is	called	pascal	(Pa),	in	honor	of	Blaise
Pascal	(1623–1662).	One	pascal	is	one	newton	per	square	meter.	This	is	a	rather
small	pressure.	To	get	an	idea,	imagine	that	the	atmospheric	pressure	at	sea	level
is	about	105	Pa.	A	multiple	of	the	pascal,	the	bar	=	105	Pa,	is	often	used,	because
it	is	close	to	the	old	“atmosphere”	unit,	even	if	it	is	not	SI.	We	shall	further
discuss	pressure	measurements	in	Sect.	1.3.

We	now	show	that,	at	every	point	in	a	fluid	at	rest,	the	pressure	through	all
the	surface	elements	through	the	point	O	is	the	same,	independent	of	the
orientation	of	the	surface.	This	is	an	immediate	consequence	of	the	shear	stresses
being	zero.

We	take	the	coordinate	axes	with	origin	in	O,	as	shown	in	Fig.	1.2.	We	then
take	a	tetrahedron	having	three	surfaces	on	the	coordinate	planes	and	the	fourth
one,	ABC,	inclined	and	near	to	O.	Let	n	be	the	external	normal	to	ABC.	Both
volume	and	surface	forces	act	on	the	tetrahedron,	which,	by	definition,	is	in
equilibrium.	We	do	not	know	the	sufficient	conditions	for	the	equilibrium,
because	we	are	dealing	with	a	fluid	element.	However,	we	know	the	necessary
ones.	We	mentally	solidify	the	element.	The	conditions	necessary	and	sufficient
for	the	equilibrium	of	the	“solidified”	element	are	certainly	necessary	for	the
equilibrium	of	the	liquid	element.



Fig.	1.2 Pressure	is	independent	of	direction

We	first	observe	that	the	volume	forces,	the	weight	in	particular,	are
infinitesimal	of	the	third	order	of	the	linear	dimensions,	because	they	are
proportional	to	the	volume.	The	surface	forces	are	infinitesimal	of	the	second
order.	We	can	consequently	neglect	the	volume	forces.	We	conclude	that,	for
equilibrium,	the	pressure	forces	must	have	zero	resultant.	Let	us	impose	that,
starting	with	one	direction,	x,	for	example.	Let	p	x	be	the	pressure	on	the	face
normal	to	x,	which	is	OCB	and	has	the	area	dS	x	.	The	corresponding	force	is	in
the	positive	direction	of	the	x-axis.	We	call	α	the	angle	between	the	unit	vector	n
and	the	x-axis	and	dS	the	area	of	ABC.	The	pressure	p	exerts	a	force	on	ABC	that
has	the	direction	of	−n.	Its	component	on	the	x-axis	is	equal	to	 .
Hence,	the	equilibrium	condition	is	 .

On	the	other	hand,	geometry	immediately	gives	 ,	and	we	have	
.	Similar	conditions	hold	for	the	other	components	and	we	have

which	is	what	we	had	to	show.
The	pressure	in	a	fluid	in	equilibrium	is	independent	of	the	direction	in

which	it	is	exerted.

1.2	 Fluid	Statics
The	density	of	a	fluid	can	be	different	at	its	different	points,	namely	it	may	be	a
function	of	the	coordinates,	ρ(x,	y,	z).	Let	us	see	how	it	varies.	We	start	by
choosing	an	inertial	frame,	as	in	Fig.	1.3,	and	mentally	insulating	an
infinitesimal	cubic	element	of	the	fluid.



Fig.	1.3 Pressure	and	volume	forces	on	an	infinitesimal	cubic	fluid	element

Let	(x,	y,	z)	be	the	coordinates	of	the	element,	dV	=	dx	dy	dz	its	volume	and
dS	the	area	of	the	faces.	We	indicate	with	d	F	(S)	the	resultant	of	the	(6	in
number)	surface	forces	and	with	d	F	(V)	the	volume	force.	The	latter	is
proportional	to	the	mass	of	the	element,	namely

A	necessary	equilibrium	condition	is	the	resultant	force	being	zero

	 (1.3)
Consider	the	components	parallel	to	one	axis,	z,	for	example.	The

contributing	surface	forces	are	those	that	exert	through	the	two	planes	normal	to
z.	Adding	them	up,	we	have	 .	The

z	component	of	the	volume	force	is	 ,	and	Eq.	(1.3)
gives

or

Similar	expressions	hold	for	the	other	axes,	and	we	can	summarize

	 (1.4)
or,	in	an	equivalent,	more	synthetic	notation

	 (1.5)
A	relevant	example	of	the	volume	force	is	weight.	Neglecting	the	effects	of



the	earth’s	rotation,	G	=	g	=	(0,	0,	−g),	namely	the	gravity	acceleration.
Equation	(1.4)	becomes

	 (1.6)
The	pressure	decreases	with	increasing	height.	Every	volume	element	(see

Fig.	1.4)	is	subject	to	its	weight,	a	force	that	must	be	equilibrated	by	the	pressure
forces,	acting	on	its	horizontal	faces.	The	pressure	below	must	push	more	than
the	pressure	above.

Fig.	1.4 A	fluid	element	in	the	field	of	the	weight

We	also	see	that	the	pressure	varies	with	height	but	not	with	the	other
coordinates,	namely	that	it	is	constant	on	any	horizontal	plane.	The	surfaces	of
constant	pressure	are	called	isobaric	surfaces	.	In	the	field	of	the	weight	force,
the	isobaric	surfaces	are	the	horizontal	planes;	such	are	also,	it	should	be
remembered,	the	equipotential	surfaces	.	As	a	matter	of	fact,	the	equality	of
isobaric	and	equipotential	surfaces	is	a	general	property	when	the	volume	force
is	conservative.	If	it	is	such,	and	we	indicate	its	potential	with	ϕ,	the	force	per
unit	mass	is	 	and

	 (1.7)
The	gradients	of	the	pressure	and	of	the	potential	are	parallel.	The	isobaric

and	equipotential	surfaces,	which	are	normal	to	them,	are	parallel	too,	and	so
they	coincide.

A	further	important	property	is	that	the	isobaric	surfaces	are	also	surfaces	of
constant	density.	We	show	that	considering	two	isobaric,	hence	also
equipotential,	surfaces	S	and	S′,	infinitely	near	to	each	other	(see	Fig.	1.5).	Let	d
n	be	the	vector	normal	to	the	surfaces	from	S	to	S′,	dp	the	pressure	difference
and	dϕ	the	potential	difference.



Fig.	1.5 Two	infinitely	close	isobaric	and	equipotential	surfaces

It	follows	from	the	properties	of	the	gradient	that	dp	is	equal	to	the	dot
product	of	its	gradient	and	of	d	n,	and	the	same	can	be	said	for	dϕ.	Hence,

but,	for	Eq.	(1.7),	we	can	write	 ,	and	finally

Now,	the	left-hand	side	of	this	expression	does	not	depend	on	the	coordinates
on	the	surfaces.	Hence,	the	same	must	be	valid	for	the	density	ρ.

In	conclusion,	in	a	fluid	at	rest	in	a	field	of	conservative	forces,	the	isobaric
surfaces	are	also	equipotential	and	constant	density	surfaces.	We	observe	that
when	we	look	at	the	free	surfaces	of	the	liquids,	which,	on	small	scales,	are
horizontal	planes.	On	larger	extensions,	comparable	to	those	of	the	earth,	such	as
on	lakes	and	seas,	free	surfaces	are	spherical.	The	same	arguments	explain	the
spherical	shape	of	the	planets	and	of	many	celestial	bodies.	Several	of	them	are
gaseous,	such	as	the	sun	and	some	of	the	planets.	As	for	the	solid	planets,	like
earth,	one	should	consider	that	they	were	fluid	when	they	formed.	To	be	precise,
a	fluid	celestial	body	is	not	at	rest	in	an	inertial	frame,	due	mainly	to	its	rotation
about	its	axis.	We	can	extend	the	above	arguments	to	include	the	inertial	forces,
in	particular,	the	centrifugal	force	and	its	potential.	The	resulting	equipotential
surfaces	are	not	spherical,	but	rather	rotation	oblate	ellipsoids.

1.3	 Fluids	in	the	Weight	Field
In	this	section,	we	shall	consider	the	case	of	the	weight	force	and	take	the	z-axis
vertical	upwards.	G	is	the	gravity	acceleration	and	we	have

	 (1.8)
Equation	(1.6)	holds

	 (1.9)
If	we	want	to	know	how	the	pressure	varies	with	height,	we	need	to	know

something	about	density.	We	shall	consider	here	two	important	cases;	a	liquid,
like	water,	and	a	gas,	like	the	atmosphere.



In	the	case	of	a	liquid,	the	density	can	be	considered	constant,	namely
independent	of	pressure,	in	a	good	approximation.	We	can	write	the	latter	part	of
Eq.	(1.9)	as	 .	We	integrate	to	find	the	pressure	difference	between	two
points,	say	A	and	B,	at	different	heights	(Fig.	1.6).	We	find	

.	Calling	 ,	we	have

	 (1.10)
which	is	known	as	the	Stevin	law	,	after	Simon	Stevin	(1548–1620).	The
quantity	ρgh	is	the	hydrostatic	pressure	,	which	is	the	pressure	exerted	by	a
column	of	homogenous	liquid	of	height	h	on	its	base.	Indeed,	consider	a	fluid
cylinder	of	height	h	with	base	of	area	S.	Its	mass	is	Shρ	and	its	weight	Shρg.	This
is	the	force	that	acts	on	the	basis.	Dividing	it	by	the	area	of	the	basis,	we	have
the	pressure,	Shρg/S	=	ρgh.

Fig.	1.6 Liquid	cylinder	and	two	points	at	different	heights

The	Stevin	law	tells	us,	in	particular,	how	the	pressure	varies	when	we	dive
underwater.	At	every	meter	of	depth,	the	pressure	varies	of
ρg	=	103	kg/m3	×	9.8	m	s−2	≈	104	Pa.	In	other	words,	the	pressure	underwater
increases	by	one	atmosphere	(about	105	Pa)	every	10	m.	This	is	why,	diving
down,	one	must	“compensate”	the	pressure	in	the	ears	every	few	meters.

The	atmospheric	pressure	on	earth	is	the	weight	of	the	air	column	on	its
basis.	In	this	case,	however,	we	cannot	consider	the	density	to	be	constant.	On
the	contrary,	the	pressure	continuously	decreases	with	increasing	altitude.
Already	at	40	km,	the	air	density	is	only	a	few	per	mille	of	the	sea	level	value.

The	first	measurement	of	the	atmospheric	pressure	and	the	correct
interpretation	of	the	experiment,	in	1644,	were	carried	out	by	two	pupils	of
Galilei,	respectively,	Vincenzo	Viviani	(1622–1703)	and	Evangelista	Torricelli
(1608–1647).	The	instrument	used	by	Viviani	is	known	as	the	Torricelli
barometer	,	and	is	shown	in	Fig.	1.7.	To	build	it,	one	takes	a	glass	tube	about	one
meter	long,	closed	at	one	extreme,	turns	it	vertical	and	completely	fills	it	with
mercury.	The	open	end	is	then	closed	with	a	finger	(use	a	glove;	mercury	is



toxic),	the	tube	turned	upside	down	and	its	extreme	immersed	in	a	basin	of
mercury.	If	we	now	open	the	extreme,	we	see	the	free	surface	of	mercury	in	the
tube	lowering	somewhat	and	then	reaching	the	equilibrium	level,	when	the
column	height	is,	say,	h.

Fig.	1.7 The	Torricelli	barometer

Notice	that	if	we	move	the	tube	vertically	up	or	down,	provided	the	lower
extreme	remains	in	the	mercury	and	some	space	remains	on	top,	the	height	h	of
the	column	over	the	free	surface	in	the	basin	does	not	vary.	In	addition,	if	you
repeat	the	experiment	with	tubes	of	different	diameters	and	different	shapes,
including	curved	ones,	you	shall	observe	that	the	height	of	the	column	is	always
the	same.

The	interpretation	of	Torricelli	was	as	follows.	All	the	points	at	the	level	of
the	free	surface	in	the	basin,	both	on	the	surface	itself	and	inside	the	tube,	like	A
in	the	figure,	are	at	the	same	pressure	,	which	is	the	atmospheric	pressure	p	a	;
otherwise,	it	would	not	be	in	equilibrium.	However,	the	air	column	does	not	act
on	the	horizontal	section	A	inside	the	tube.	To	what	is	the	equilibrating	force
due?	Torricelli	stated	that	no	air	could	have	possibly	entered	into	the	tube	above
the	mercury.	That	space	had	to	be	empty.	Note	that,	at	that	time,	the	majority	of
scientists	did	not	accept	the	existence	of	a	vacuum	.	If	this	is	the	case,	he
continued,	the	equilibrium	is	due	to	the	weight	of	the	mercury	column	.	Its
pressure	on	the	base	in	A	is	ρgh,	where	ρ	is	the	density	of	mercury.

To	be	historically	precise,	the	Viviani	and	Torricelli	experiment	had	been
anticipated	by	a	similar	and	highly	spectacular	one	made	with	water	around	1641
by	Gaspero	Berti	(ca	1600–1643).	A	reconstruction	is	shown	in	Fig.	1.8.	G.
Galilei	had	stated	that	water	cannot	be	raised	in	a	pipe	more	than	“18	arms”,
which	is	about	10.5	m.	Berti	fastened	a	vertical	tube	to	the	façade	of	his	palace
in	Rome,	somewhat	longer,	namely	12	m,	to	be	safe,	with	a	glass	globe	tightly



fixed	on	the	top.	On	the	bottom,	the	tube	ended	in	a	jar	and	was	closed	with	a
tap.	The	upper	globe	had	an	opening	in	its	top	(C	at	the	top	of	the	figure).	Globe
and	tube	were	completely	filled	with	water	through	that	opening,	which	was	then
closed	with	a	cork.	The	tap	near	the	road	was	opened.	Water	started	to	run	out	in
the	jar,	and	the	free	surface	of	water	moved	down	in	accord,	for	a	while.	But
soon,	a	steady	level	was	reached,	which	did	not	change	until	the	following
morning.	When,	at	that	time,	the	cork	on	the	globe	was	removed,	all	the	water
poured	out.	Berti	measured	the	height	of	the	column,	from	the	free	surface	in	the
jar.	It	was	just	18	arms.

Fig.	1.8 The	Berti’s	experiment.	From	“Technica	curiosa,	sive	mirabilia	artis”	by	C.	Schott,	1687

The	Torricelli	barometer	is	still	used	in	laboratories.	With	the	known	values
of	ρ	=	13.596	×	103	kg/m3	and	of	g,	we	can	determine	the	atmospheric	pressure,
by	measuring	the	height	h.	Under	normal	conditions	at	sea	level,	it	is
h	=	760	mm.	The	atmospheric	pressure	is	then

	 (1.11)



We	have	already	used	this	value.	Obviously,	at	a	given	point,	the	pressure
varies	in	time	depending	on	the	weather	conditions.	The	just-calculated	value	is
an	average,	which	is	assumed	by	definition	to	be	the	standard	atmospheric
pressure	.	It	is	often	used	as	measurement	unit,	called	atmosphere	(atm)

	 (1.12)
Another	often	used	unit,	non-SI,	is	the	pressure	of	a	1	mm	height	mercury

column,	called	a	torr	.	Clearly,	one	torr	is	1/760	of	an	atmosphere

	 (1.13)
In	practice,	the	atmospheric	pressure	is	measured	with	barometers,	which	are

handier	to	use.	A	common	type	is	the	aneroid	barometer	,	which	consists	of	a
box	partially	exhausted	of	air.	Its	top	is	an	elastic	disk,	which	budges	inwards
under	the	pressure	to	measure.	The	deformation	moves	a	pointer	connected	to
the	disk	through	suitable	levers	that	amplify	the	displacement.	The	pointer
moves	on	a	scale,	on	which	the	pressure	values	can	be	directly	read.	While	the
Torricelli	barometer	gives	absolute	measurements,	the	aneroid	barometers	give
only	relative	ones.	Their	scale	must	be	calibrated	on	an	absolute	instrument.

We	now	consider	how	the	pressure	of	a	gas,	subject	to	its	weight,	varies	with
the	height,	or	the	altitude	in	the	atmosphere.	To	make	things	simpler,	we	assume
the	temperature	to	be	uniform,	namely	independent	of	the	height.	Obviously,	this
is	not	the	case	in	the	atmosphere	over	large	differences	of	altitude,	but	it	is
approximately	true	over	moderate	drops	(a	few	hundred	meters).	In	a	gas	at
constant	temperature,	there	is	a	well-defined	relation	between	pressure	and
density;	this	is	the	gas	law,	which	we	shall	study	in	the	next	chapter.	We
anticipate	here	that	it	simply	states	that	the	density	is	proportional	to	the
pressure,	or	 .

We	take	the	z-axis,	as	usual,	to	be	vertical	upward	with	its	origin	at	sea	level.
We	indicate	with	p	0	and	ρ	0	the	pressure	and	the	density	at	this	level.	The	gas
law	tells	us	that

	 (1.14)
Using	the	Stevin	law	for	a	column	of	height	dz,	we	have

and,	spearing	the	variables

This	is	a	differential	equation.	The	unknown	is	the	function	p(z).	As	we	have



only	one	of	the	two	variables	on	each	side,	we	solve	it	by	integration	from	the
reference	height	z	=	0	to	the	generic	z

We	take	the	exponential	of	both	sides,	obtaining

	 (1.15)
The	gas	law	immediately	gives	the	density’s	corresponding	dependence	on

the	altitude

	 (1.16)
We	see	that	both	the	density	and	the	pressure	decrease	exponentially	with

increasing	altitude.	The	constant	λ	defined	in	Eq.	(1.15),	which	has	the
dimension	of	a	length,	is	the	drop	over	which	the	pressure	and	the	density	reduce
their	value	by	a	factor	1/e.	In	the	atmosphere,	λ	is	of	the	order	of	7–8	km.
Figure	1.9	graphically	represents	Eqs.	(1.5)	and	(1.16).

Fig.	1.9 Pressure	(left	scale)	and	density	(right	scale)	in	normal	atmosphere	versus	altitude

Communicating	vessels	is	the	name	given	to	a	set	of	connected	containers
open	on	their	upper	surface.	If	a	liquid	is	introduced	into	any	of	them,	it	will
occupy	all	the	connected	vessels.	At	equilibrium,	if	the	liquid	is	homogeneous,
all	the	free	surfaces	are	at	the	same	level,	whatever	the	shape	of	the	vessels.

1.4	 Archimedes	Principle
The	Archimedes	principle	,	established	by	Archimedes	of	Syracuse	(287	BC–
212	BC),	states	that	a	body	immersed	in	a	fluid	experiences	an	upward	directed
force	equal	in	magnitude	to	the	weight	of	the	fluid	it	displaces.	It	is	called



buoyancy	or	upthrust	.	The	buoyant	force	is	present	whether	the	body	is
completely	or	partially	immersed	in	the	fluid	and	is	applied	in	the	center	of	mass
of	the	displaced	fluid.	To	demonstrate	the	principle,	let	us	start	by	thinking	that
the	body	is	not	present	and	consider	the	volume	of	fluid	that	will	be	occupied	by
the	body	when	we	put	it	back.	This	volume	being	at	rest,	the	surface	forces
balance	the	volume	force.	The	latter	is	the	weight	of	the	fluid	(that	will	be
displaced	by	the	body).	It	is	applied	in	the	center	of	the	fluid	mass.	If	we	now
put	the	body	back	in	its	place,	the	surface	forces	do	not	change,	the	surface	being
the	same.	Their	resultant	is	the	weight	of	the	displaced	fluid	mass.

If	V	i	is	the	immersed	volume	and	ρ	l	is	the	density	of	the	fluid,	the	buoyancy
is

	 (1.17)

Example	E	4.1
An	iceberg	of	density	ρ	i		=	900	kg/m3	is	immersed	in	seawater	(density	ρ	w
	=	1030	kg/m3).	Find	the	emerged	fraction.

Calling	V	i	and	V	e	the	immersed	and	emerged	volume,	respectively,	the
buoyancy	is	 	and	the	weight	 .	For	equilibrium,	it
should	be	 ,	or

The	emerged	fraction	is	then

Consider	now	the	case	of	a	homogeneous	body	of	density	ρ	b	completely
immersed	in	the	liquid.	The	volumes	of	the	body	and	of	the	displaced	liquid
coincide.	Call	them	V.	Both	forces	are	applied	in	the	center	of	mass	of	the	body.
Their	moment	is	zero.	The	resultant	force	is

	 (1.18)
which	is	vertical	downward	if	the	body	is	denser	than	the	liquid,	and	upward
in	the	opposite	case.

1.5	 Fluid	Equilibrium	in	the	Centrifugal	Field
Consider	now	a	homogeneous	liquid	in	a	cylindrical	container,	which	rotates



about	its	axis	at	constant	angular	velocity	ω.	After	an	initial	transient,	the	liquid
assumes	an	equilibrium	configuration	in	which	the	free	surface	is	a	rotation
paraboloid,	with	its	axis	on	the	rotation	axis.

The	problem	is	conveniently	studied	in	a	frame	rotating	with	the	cylinder	and
z-axis	on	the	geometrical	axis.	The	x	and	y	axes	are	horizontal	and	rotate	with
the	cylinder.	The	reference	is	not	inertial	and	we	must	include	the	apparent	force,
which	is	the	centrifugal	force	.	Both	this	force	and	the	weight	are	proportional	to
the	mass,	both	being	volume	forces.

The	centrifugal	force	per	unit	mass	is	the	centrifugal	acceleration,	which	is

proportional	to	the	distance	from	the	axis	 	and	is	directed	outwards

(see	Fig.	1.10).	Calling	r′	the	position	vector	taken	from	the	axis,	the	centripetal
acceleration	is	then	 .	Consequently,	the	field	in	which	the	liquid	is
immersed	is

	 (1.19)

Fig.	1.10 A	liquid	in	a	rotating	cylinder

The	field	is	conservative	and	its	potential,	by	integration,	is

	 (1.20)
Under	equilibrium	conditions,	the	free	surface	is	an	equipotential,	ϕ	=	const,

which	we	can	solve	for	z	and	write



where	z	0	is	a	constant	to	be	determined.	This	is	the	equation	of	a	round
paraboloid;	z	0	is	the	value	of	z	for	x	=	y	=	0,	and	hence	is	the	vertex	of	the
paraboloid.	It	can	be	calculated	knowing	the	volume	of	the	liquid.

1.6	 Viscosity
In	Sect.	1.1,	we	saw	that,	in	general,	the	surface	forces	acting	on	a	fluid	element
have	a	component	normal	to	the	surface,	which	is	the	pressure,	and	one	parallel
to	the	surface,	which	is	the	shear	stress.	The	latter	are	zero	if	the	fluid	is	at	rest	or
if	it	moves	all	together,	as	in	the	rotation	in	a	stationary	regime.	Contrastingly,
shear	stresses	are	present	if	parts	of	the	fluid,	both	liquid	and	gas,	move	relative
to	one	another.	We	shall	now	begin	to	study	these	phenomena.

Consider	two	fluid	elements	flowing	one	over	the	other,	as	shown	in
Fig.	1.11.	We	call	v	1	and	v	2	the	velocities	of	the	two	elements,	which	are
parallel	to	the	contact	surface,	which	we	call	dS.	We	consider	the	case	that	υ
1	>	υ	2.	Like	the	friction,	the	shear	stress	always	acts	in	opposition	to	the	relative
motion	of	the	elements.	In	other	words,	the	shear	stress	force	direction	is	always
opposite	to	the	relative	velocity.	In	the	case	we	are	considering,	υ	1	>	υ	2,	the

direction	of	the	shear	stress	 	exerted	by	element	1	on	element	2,	which	is

slower,	is	such	as	to	accelerate	it,	while	the	direction	of	the	shear	stress	
exerted	by	element	2	on	element	1,	which	is	faster,	is	such	as	to	decelerate	it.
The	two	forces	are	an	action-reaction	pair	and,	as	such,	are	equal	and	opposite.

Fig.	1.11 Two	fluid	elements	in	relative	motion

We	already	know	that	the	surface	forces	are	proportional	to	the	surface	on
which	they	act.	In	addition,	experiments	show,	as	we	shall	see,	that	the	shear
stress	is	proportional	to	the	derivative	of	the	magnitude	of	the	velocity	in	the
direction	n	normal	to	the	considered	surface	dS,	namely	that



	 (1.21)
where	η	is	an	important	quantity	characteristic	of	the	fluid,	which	is	called
viscosity	and,	more	specifically,	dynamic	viscosity	(to	distinguish	it	from
keninematic	viscosity,	as	we	shall	see	in	Sect.	1.11).	For	a	given	fluid,	viscosity
depends	on	temperature	and	pressure.	The	physical	dimensions	of	viscosity,	such
as	one	sees	in	Eq.	(1.21),	are

	 (1.22)
where	p	in	the	last	member	stands	for	pressure.	The	unit	of	viscosity	is	kg	m–

1	s–1	or,	more	frequently,	Pa	s.	Notice	that	in	the	literature,	one	can	still	find	an
old	unit	called	poise	,	which	is	1	g	cm–1	s–1,	hence	equal	to	0.1	Pa	s.

Table	1.1	examples	of	the	viscosity	of	several	liquids	and	gases.	In	two
relevant	cases,	water	and	air,	the	values	at	several	temperatures	are	reported.
Notice	that	the	viscosity	values	span	more	than	ten	orders	of	magnitude.	Notice
also	that	the	viscosity	of	the	liquids	usually	decreases	with	increasing
temperature,	while	that	of	gases	increases.

Table	1.1 Viscosity	of	liquid	and	gases

Liquid Temp.	(°C) η	(µPa) Gas Temp.	(°C) η	(µPa)
Water 0 1.787 Air −32 15.39
	 20 1.002 	 0 17.08
	 40 0.653 	 18 18.27
	 60 0.467 	 40 19.04
	 80 0.355 Argon 20 22.17
	 100 0.282 Helium 20 19.41
Methyl	alcohol 20 0.597 Hydrogen 20.7 8.76
Glycerin 20 1.49 Neon 20 31.11
Olive	oil 20 84 Nitrogen 27.4 17.81
Molasses 109 2.8	×	106 Oxygen 19.1 20.18

Pitch 20 1010 Methane 20 10.87

Liquid	tin 500 1.2 Water	vapor 100 12.55
Liquid	zinc 389 1.31 	 300 20.24

The	shear	stress	can	be	obtained	dividing	Eq.	(1.21)	by	the	surface	element
dS,	which	gives



	 (1.23)
The	physical	meaning	of	viscosity	can	be	understood	considering	the

molecular	structure	of	fluids.	This	will	be	done	in	Sect.	6.3.
We	now	go	back	to	the	liquid	in	a	rotating	cylinder	of	the	previous	section,

where	we	considered	its	motion	in	a	stationary	regime.	Suppose	now	the
cylinder	containing	the	liquid	to	be	initially	at	rest.	The	surface	of	the	liquid	is	a
horizontal	plane.	Immediately	after	the	rotation	is	started,	the	surface	is	still
plane	and	the	liquid	is	still	at	rest,	while	the	surfaces	of	the	cylinder	rotate.	The
viscosity	between	the	walls	of	the	cylinder	and	the	liquid	elements	accelerates
layers	of	fluid,	beginning	with	those	closer	to	the	walls,	and	gradually	reaching
the	innermost	ones.	After	a	transient,	the	situation	becomes	stationary.	The	liquid
now	rotates	as	a	solid	body;	there	are	no	relative	motions	between	layers	of
liquid,	and	the	shear	stresses	are	zero.

The	validity	of	Eq.	(1.21)	can	be	verified	experimentally	with	the	device
shown	in	Fig.	1.12.	It	is	also	used	to	measure	viscosities	and	is	called	a
viscometer	.	The	internal	cylinder	C	1	of	radius	r	1	is	rather	massive	and	hangs
on	a	torsion	wire,	bearing	an	index	I	to	measure	the	rotation	angles.	The	internal
cylinder	is	contained	in	an	external	one,	coaxial	with	it,	with	C	2	of	radius	r	2,	a
bit	larger	than	r	1.	Hence,	we	have	 .	The	external	cylinder	is
fixed	to	an	axis	that	can	be	put	into	rotation	by	an	engine	(not	shown	in	the
figure).	The	interspace	between	the	cylinders	is	filled	with	the	liquid	under	study
up	to	the	level	AA.	Let	h	be	the	height	of	the	immersed	part	of	the	internal
cylinder.



Fig.	1.12 A	viscometer

We	now	put	in	rotation	C	2	with	a	certain	angular	velocity	ω,	corresponding
to	the	velocity	υ	=	ωr	of	its	wall.	We	observe	the	index	I	moving	to	a	new
aquarium	position,	rotated	at	an	angle	α	relative	to,	the	position	in	absence	of
rotation.	The	device	is	a	torsion	balance;	the	angle	α	(and	the	elastic	moment)	is
proportional	to	the	moment	M	acting	on	the	cylinder	C	1.	This	is	the	moment	due
to	viscosity.

We	can	think	of	the	liquid	as	being	composed	of	coaxial	cylindrical	layers.
The	outermost	layer,	which	is	in	contact	with	cylinder	C	2,	is	at	rest	relative	to	it,
namely	it	moves	with	its	velocity	υ.	Similarly,	the	innermost	layer	is	in	contact
with	cylinder	C	1	and	is	still.	The	velocity	of	the	intermediate	layers	varies
gradually	between	these	two	values,	maximum	outside,	minimum	inside.

Equation	(1.21)	tells	us	that	the	viscous	force	is	directly	proportional	to	the
area	of	the	two	surfaces	in	relative	motion,	to	the	difference	of	velocity	(namely
υ,	because	C	1	is	at	rest)	and	inversely	to	their	distance.	The	proportionality
coefficient	is	the	viscosity	that	we	want	to	measure.

Consider	the	liquid	layer	of	height	h	and	angular	width	dϕ	(see	Fig.	1.13).
The	internal	and	external	surfaces	are,	respectively,	 	and	 .
They	are	not	exactly	equal,	but	they	are	close	to	being	so,	because	the	internal
and	external	radiuses	are,	by	construction,	almost	equal.	We	can	then
approximate	each	area	with	the	mean	of	the	two.	If	r	is	the	mean	of	r	1	and	r	2,
this	is	 .	The	shear	force	on	each	of	the	two	surfaces	given	by	Eq.	(1.21)
is

Fig.	1.13 Section	of	the	viscometer	of	Fig.	1.12

The	force	is	parallel	to	the	relative	velocity,	and	hence	is	perpendicular	to	the
axis.	Its	moment	about	the	axis	is



Integrating	we	have

	 (1.24)
where,	we	recall,	S	=	2πrh	is	the	area	of	the	moving	surfaces	and	 	is
the	angular	velocity	of	C	1.	We	obtain	the	moment	M	from	the	measurement	of
the	rotation	angle	α	of	the	torsion	balance.

We	can	now	check	the	validity	of	Eq.	(1.21).	If	we	vary	the	angular	velocity
ω	of	the	external	cylinder,	we	observe	that	α	varies	in	proportion.	If	we	change
the	height	h	of	the	liquid,	for	example,	using	only	half	of	it,	and	consequently
halving	the	facing	surfaces,	we	see	that	α	varies	in	proportion	too.	We	can	verify
the	dependence	on	the	distance	Δr	by	changing	the	internal	cylinder	with	one	of
smaller	or	larger	radius.	These	tests	show	that	Eq.	(1.21)	holds.

On	the	other	hand,	we	can	use	the	device	to	measure	the	viscosity	of	a	liquid,
measuring	the	moment	M	and	the	stationary	state	angular	velocity	ω	and
knowing	the	other	quantities	S,	r	and	Δr	by	construction.	This	is	given	by

	 (1.25)

1.7	 Incompressible	Flow
We	now	begin	the	study	of	hydrodynamics	,	or	fluid	dynamics.	As	we	know
from	everyday	experience,	the	motions	of	fluids	can	be	very	different,	ranging
from	rather	simple	to	very	complicated.	For	example,	the	motion	of	the	water	in
a	river	in	a	stationary	regime	is	simple,	while	being	much	more	complicated	in	a
mountain	creek	or	waterfall.	The	motion	of	air	in	the	wake	of	an	airplane	or	of	a
car	is	extremely	complex.

We	shall	start	from	the	simplest	cases	or	even	idealizations.	We	shall	then
move	on	to	more	realistic	situations.	In	this	chapter,	we	shall	limit	the	discussion
to	situations	in	which	the	density	of	the	fluid	can	be	considered	constant,
independently,	in	particular,	of	pressure.	In	other	words,	we	shall	assume	the
fluid	to	be	incompressible	.	Its	motion	is	called	incompressible	flow	.	This
approximation	is	good	for	liquids,	as	is	obvious,	but	can	also	be	applied	to	the
gases	in	several	dynamical	problems.	As	a	matter	of	fact,	the	volume	changes
during	motion	are	generally	very	small,	with	the	exception	of	instances	in	which
the	velocity	is	close	to	the	speed	of	sound	(340	m/s	for	air	at	ambient
temperature).



We	shall	describe	the	motions	in	an	inertial	reference	frame.	We	imagine	the
fluid	divided	into	physically	infinitesimal	elements.	Let	us	consider	the	situation
in	a	certain	instant	t.	In	that	instant,	the	velocity	of	the	element	in	the	position	(x,
y,	z)	is,	say,	v(x,	y,	z,	t).	The	velocity	is	a	vector	function	of	coordinates	and	time.
In	the	next	immediate	instant,	we	shall	find	a	different	fluid	element	at	the	same
point,	moving,	in	general,	at	a	different	speed.	A	vector	function	of	the
coordinates	and,	possibly,	of	time	is	called	a	vector	field	.	If	the	vector	is
independent	of	time,	the	field	is	said	to	be	stationary	.	The	field	we	are
considering	is	the	velocity	field	.	If	the	velocity	field	is	stationary,	and	we	fix	our
attention	to	any	point	in	the	fluid,	all	the	different	fluid	elements	that	we	see
going	through	that	point	have	the	same	velocity.	For	example,	the	water	that
goes	through	a	section	of	a	river	in	a	stationary	regime	is	always	physically
different,	but	its	velocity	is	always	the	same.

In	the	first	volume	of	the	course,	we	studied	force	fields,	which	are	vector
fields	exactly	similar	to	the	velocity	field.	In	that	instance,	we	found	it	useful	to
draw	the	field	lines.	This	is	also	very	useful	now.	The	lines	of	the	velocity	field
are	called	streamlines	.	A	streamline	is	a	line	drawn	in	the	fluid	such	that	its
tangent	at	each	point	is	parallel	to	the	local	fluid	velocity.	The	streamlines	are
infinite	in	number.	At	any	point,	there	is	only	one	streamline.	The	set	of	all	the
streamlines	at	a	given	instant	constitutes	the	instantaneous	flow	pattern.

Let	us	examine	the	procedure	for	drawing	the	field	lines,	say	at	a	certain
instant	t,	to	take	into	account	non-stationary	situations.	We	shall	obtain	a	shot	of
the	field	at	the	considered	instant.	We	start	from	point	1	in	Fig.	1.14	and	consider
the	velocity	v	1	of	the	fluid	element	passing	at	the	considered	instant.	We	make	a
small	step	δ	s	in	the	direction	of	v	1.	We	reach	point	2.	We	consider	the	velocity
v	2	of	the	fluid	element	passing	in	2	at	the	same	instant	t	and	make	a	small	step
in	its	direction,	and	so	on.	In	this	way,	we	draw	a	broken	line,	which,	going	to
the	limit	of	infinitesimal	step	length,	becomes	a	curve.	This	is	the	flow	line.

Fig.	1.14 Building	a	streamline

We	can	visualize	the	flow	pattern	in	a	liquid	with	the	following	artifice.	We
mix	into	the	fluid	a	number	of	small	particles,	which	we	can	see,	and	that	can
remain	in	suspension.	We	can	use	aluminum	powder	in	water,	for	example.	The
particles	make	the	fluid	elements	somewhat	visible.	We	can	take	pictures	and



films.	If	we	take	a	photo	with	an	exposure	time	Δt,	every	particle	will	appear	as
an	oriented	segment	v	Δt,	which	is	the	displacement	of	the	particle	in	the
exposure	time.	Hence,	every	oriented	segment	is	proportional	to	the	velocity	at
that	point	and	has	its	direction.	We	obtain	a	snap	shot	of	the	velocity	field	at	the
considered	instant.

In	a	non-stationary	field,	the	streamlines	change	continuously,	while	in	a
stationary	field,	they	do	not.	We	shall	consider	only	stationary	conditions	in	the
following,	up	to	the	point	where	it	is	advisable	to	do	the	contrary.

A	second	important	concept	is	the	flow	tube	,	also	called	a	stream	tube	.
Consider	any	closed	curve,	like	e	Γ	in	Fig.	1.15.	A	flow	tube	is	the	set	of	the
flow	lines	that	pass	along	the	points	of	this	curve.	A	flow	tube	of	infinitesimal
section	is	called	a	flow	filament	or	stream	filament	.

Fig.	1.15 A	flow	tube

It	is	often	useful	to	look	at	the	motion	of	a	fluid	from	a	different,
complementary	point	of	view.	Let	us	fix	our	attention	on	a	certain	fluid	element.
We	might	paint	it	mentally	in	red,	for	example.	We	mark	it	by	stating	that	it	is
the	element	that	passes	along	the	point	(x	0,	y	0,	z	0)	at	time	t	0.	We	look	at	its
motion.	Our	element	describes	a	trajectory,	which	we	call	the	path	line	.	At	a
subsequent	instant	t	1,	we	see	another	element	passing	at	(x	0,	y	0,	z	0).	We
mentally	paint	it	blue.	We	look	at	it	and	see	its	trajectory.	In	general,	the	red	and
blue	trajectories	may	be	different.	However,	if	the	velocity	field	is	stationary,
they	are	equal.	It	is	evident	that	in	a	stationary	field,	the	path	lines	and	the
streamlines	coincide.

Let	us	now	go	back	to	the	flow	tube	in	a	stationary	regime.	Indeed,	it
behaves	exactly	like	a	tube.	No	flux	exits	or	enters	from	its	lateral	walls,	even	if
these	are	ideal	and	not	physical.	Indeed,	by	definition,	the	velocity	is	tangent	to
its	walls	and	consequently	cannot	have	any	normal	component.	This	observation
has	the	following	important	consequence.

Consider	a	flow	tube	having	a	section	small	enough	to	allow	for	considering



the	velocity	to	be	equal	at	all	the	points	of	a	given	normal	section	(but	obviously
not	in	the	different	ones).	Consider	two	normal	sections	S	1	and	S	2,	as	in
Fig.	1.16.	Call	v	1	and	v	2	the	velocities	of	the	fluid	in	the	two	sections.

Fig.	1.16 A	section	of	an	infinitesimal	flow	tube

As	the	mass	is	conserved	and	as	no	mass	can	go	through	the	lateral	surface,
the	mass	that	crosses	the	section	S	1	in	any	time	interval	dt	must	be	equal	to	the
mass	crossing	S	2	in	the	same	time	interval.	Call	it	dm.	The	mass	that	crosses	S	1
in	dt	is	the	mass	contained	in	the	volume	having	S	1	as	the	base	and	υ	1	dt	as
height,	hence,	dm	=	ρυ	1	dt.	Similarly,	through	S	2,	it	is	dm	=	ρυ	2	dt.	Hence,

	 (1.26)
Considering	that	this	equality	holds	for	every	pair	of	sections	of	the	tube,	the

quantity	Q	m		=	ρSυ	is	constant	on	all	the	sections	of	the	tube.	Its	physical
meaning	is	to	be	the	fluid	mass	crossing	any	section	in	one	second	and	is	called
the	mass	flow	rate

	 (1.27)
When,	as	we	are	assuming,	the	density	is	constant,	the	quantity

	 (1.28)
is	constant	too.	It	is	the	fluid	volume	crossing	the	section	per	second,	and	is
called	the	volumetric	flow	rate	.

A	consequence	of	the	invariance	of	the	flow	rate	along	a	flow	tube	is	that,	if
the	section	of	the	tube	shrinks,	the	velocity	increases,	as	shown	in	Fig.	1.17.
Graphically,	this	implies	that	the	flow	lines	are	denser	where	the	velocity	is
larger.



Fig.	1.17 Varying	section	flow	tube

1.8	 Bernoulli	Theorem
In	this	section,	and	in	the	next	one,	we	shall	consider	the	dynamics	of	the	ideal
fluid	.	This	is	defined	as	having	constant	density	and	zero	viscosity,	in	other
words,	being	incompressible	and	inviscid.	Obviously,	ideal	fluids	do	not	exist.
However,	real	fluids	can	often	be	considered	as	almost	ideal	ones.

We	shall	consider	the	motion	of	an	ideal	fluid	in	the	field	of	weight	force.	In
absence	of	viscosity,	the	forces	are	conservative,	and	we	can	use	the	mechanical
energy	conservation	principle.	We	shall	find	an	important	result	established	in
1738	by	Daniel	Bernoulli	(1700–1782),	known	as	the	Bernoulli	theorem	.	We
shall	see	a	few	examples	in	the	next	section.

The	Bernoulli	theorem	is	based	on	the	assumptions	that	the	fluid	is	ideal	and
the	regime	is	stationary.

Figure	1.18	represents	a	portion	of	a	flow	filament	between	two	sections	AA
and	BB.	The	z-axis	is	vertical	upward.	The	first	section	has	area	dS	1	(which	is
infinitesimal).	Its	height	is	z	1.	The	pressure	at	that	point	is	p	1	and	the	fluid
velocity	is	υ	1.	Similarly,	the	second	section	has	area	dS	2;	the	height	is	z	2,	the
pressure	is	p	2	and	the	fluid	velocity	is	υ	2.	Let	us	consider	the	mass	of	fluid
laying	between	the	two	sections	at	the	instant	t	and	call	it	Δm.	Soon	after,	at	the
instant	t	+	dt,	the	mass	Δm	has	moved	and	is	now	between	the	two	sections	A′A′
and	B′B′.	The	distance	between	AA	and	A′A′	is	obviously	υ	1	dt,	and	the	distance
between	BB	and	B′B′	is	υ	2	dt.	The	mass	dm	that	crosses	both	sections	in	dt	is	the
same,	and	consequently,	as	we	already	saw	in	the	preceding	section,

	 (1.29)



Fig.	1.18 Fluid	motion	in	a	flow	filament

It	will	be	useful	to	observe	that	the	two	volumes	are	also	equal,	given	that	the
density	is	constant.	Namely

	 (1.30)
We	now	apply	the	kinetic	energy	theorem	to	the	motion	of	the	mass	Δm	from

the	first	section	to	the	second.	The	mass	moves	under	the	action	of	the	following
forces:

the	weight,	which	is	a	conservative	volume	force
the	pressure	forces	on	dS	1	and	dS	2,	which	are	normal	to	those	surfaces	and
consequently	parallel	to	the	displacement
the	pressure	forces	on	the	lateral	surface	of	the	filament,	which	are	normal
to	the	displacement	(because	the	fluid	is	non-viscous)	and	consequently	do
not	do	work.

The	work,	say	dW	g	,	done	by	the	weight	is	easily	calculated	observing	that
the	mass	of	fluid	between	the	sections	A′A′	and	BB	is	the	same	before	and	after
the	displacement.	All	goes	as	if	the	mass	dm	had	moved	from	position	z	1	to	the
position	z	2.	Hence,

The	work	of	the	pressure	forces	on	the	section	dS	1	is	equal	to	the	magnitude
of	the	force,	p	1	dS	1,	times	the	displacement	υ	1	dt.	Force	and	displacement	are
in	the	same	direction.	This	is	similar	for	the	work	on	section	dS	2,	taking	into
account	that	here	force	and	displacement	have	opposite	directions.	Hence,	we
have



The	sum	of	the	works	is	equal	to	the	variation	of	the	kinetic	energy.	To	find
the	latter,	we	can	again	imagine	that	everything	goes	as	if	the	mass	dm	would
have	changed	velocity	from	υ	1	to	υ	2.	Hence,

We	simplify	the	three	expressions	we	just	found,	all	of	them	having	the
volume	dV	occupied	by	dm	=	ρdV	and	using	Eq.	(1.30),	obtaining

The	kinetic	energy	theorem	states	that

Substituting	the	above	expression	and	simplifying	dV	everywhere,	we	have

and,	then,	moving	the	quantities	relative	to	the	same	section	to	the	same	side

	 (1.31)
Finally,	considering	that	the	two	sections	in	question	are	arbitrary,	we	can

state	that	in	all	the	sections	of	a	fluid	filament

	 (1.32)
In	other	words,	the	Bernoulli	theorem	states	that,	in	a	stream	filament	of	an

ideal	fluid	in	a	stationary	regime,	the	sum	of	the	pressure,	the	potential	energy
per	unit	mass	(ρgz)	and	the	kinetic	energy	per	unit	mass	(ρυ	2/2),	is	constant.
Notice,	however,	that	this	sum	may	be	different	in	different	stream	filaments	of
the	same	fluid.

1.9	 Applications	of	the	Bernoulli	Theorem
In	this	section,	we	shall	study	several	applications	of	the	Bernoulli	theorem.

The	Torricelli	theorem	.	Figure	1.19	shows	a	tank	of	section	S	containing	an
ideal	liquid.	On	the	lower	part	of	its	wall,	there	is	a	hole	O,	whose	section	is
small	compared	to	S.	The	height	of	the	free	surface	above	the	hole	is	h.	The
liquid	exits	from	the	hole	with	velocity	υ,	which	is	a	function	of	h.	The



atmospheric	pressure	p	a	acts	on	the	free	surfaces	of	the	liquid,	both	on	the
horizontal	one	inside	the	tank	and	on	the	jet	outside	O.	The	velocity	field	can	be
considered	stationary.	The	velocity	of	the	fluid	elements	near	the	upper	surface	is
small	relative	to	υ.	Consequently,	the	flow	lines	are	sparse	in	the	upper	part,
becoming	denser	close	to	the	hole	(see	Fig.	1.19).	We	apply	the	Bernoulli
theorem	to	any	of	these	flow	lines	between	any	points	on	the	upper	free	surface,
like	A	in	the	figure,	and	O.	We	take	the	origin	of	the	heights	in	O	and	write

or

	 (1.33)

Fig.	1.19 The	Torricelli	theorem

Notice	that	the	velocity	of	outflow	is	independent	of	the	density	of	the	liquid,
being	equal	to	the	velocity	of	a	body	free	falling	along	the	drop	h	from	rest.	This
is	obviously	a	consequence	of	energy	conservation	in	absence	of	dissipative
forces,	which	we	have	neglected.

One	might	think	to	calculate	the	rate	of	liquid	outflow	simply	as	the	product
of	the	velocity	in	the	jet	and	the	area	of	the	hole.	This	is	not	true,	because	the
velocities	of	the	fluid	elements	in	the	jet	have	a	component	inwards	toward	the
axis	of	the	stream.	Consequently,	the	section	of	the	jet	decreases	in	the	initial
part.	After	that,	the	velocities	become	parallel	and	the	jet	section	becomes
constant.	The	distance	at	which	the	contraction	ceases,	and	the	ratio	between	the
jet	cross-section	there	and	the	area	of	the	hole,	known	as	the	contraction
coefficient	,	depends	on	the	shape	of	the	discharge	tube.	The	product	of	the	area
of	this	section	and	the	velocity	gives	the	rate	of	outflow.

The	Venturi	effect	was	discovered	by	Giovanni	Battista	Venturi	(1746–1822).
The	effect	offers	a	practical	method	to	measure	the	average	speed	of	a	gas	or	a



liquid	in	a	duct.	It	is	based	on	the	measurement	of	the	pressure	change	due	to	a
change	in	the	diameter	of	the	duct.	To	this	aim,	one	inserts	into	the	duct	a
segment,	as	shown	in	Fig.	1.20,	called	a	Venturi	tube.	The	standard	section	S	1	of
the	pipe	is	reduced	to	S	2	and	then	brought	back	to	the	initial	value.	The	shape	is
designed	so	as	not	to	alter	the	flow	in	the	duct.	A	manometer	measures	the
difference	between	the	pressures	p	1	and	p	2	at	the	two	sections.

Fig.	1.20 The	Venturi	tube

Considering	a	horizontal	tube,	there	is	no	contribution	of	the	weight	force,
and	the	Bernoulli	theorem	gives

or

The	velocity	increases	when	the	section	of	the	pipe	shrinks	from	S	1	to	S	2,
because	the	flow	is	constant,	as	 .	We	use	this	relation	to	eliminate	υ

2,	obtaining

	 (1.34)

This	relation	gives	the	velocity	υ	1	of	the	unperturbed	fluid	from	the
measurement	of	the	pressure	drop	p	1–p	2,	being	the	sections	and	the	fluid
density	known.	To	be	precise,	the	velocity	of	the	fluid	is	somewhat	different	at
different	points	of	the	sections,	and	we	want	to	measure	the	mean	values	of	υ	1
and	υ	2.	Consequently,	Eq.	(1.34)	is	not	exact	and,	in	practice,	the	instrument
must	be	calibrated.

As	a	matter	of	fact,	the	Venturi	effect	is	more	general.	It	is	summarized	in



Fig.	1.21.	When	the	section	of	a	duct	decreases,	the	velocity	of	the	fluid
increases.	This	is	a	consequence	of	the	conservation	of	the	mass.	The	Bernoulli
theorem	allows	us	to	add	that,	if	the	velocity	increases,	the	pressure	decreases.
This	is	a	consequence	of	energy	conservation.

Fig.	1.21 The	Venturi	effect

The	Pitot	tube	,	invented	by	Henri	Pitot	(1695–1771),	is	used	to	measure	the
velocity	of	a	fluid	current,	or	of	an	object	moving	in	a	fluid,	like	an	airplane.	It	is
shown	in	Fig.	1.22.	It	consists	of	a	thin	tube	parallel	to	the	current	flow.

Fig.	1.22 The	Pitot-Prandl	tube

The	flow	lines,	not	altered	upstream	of	the	tube,	open	up	when	they	meet	its
rounded	head	and	then	lap	the	lateral	surface.	In	the	center	of	the	head,	O,	there
is	a	hole	that	communicates	through	a	narrow	tube	with	one	of	the	inputs	of	a
differential	manometer	(an	instrument,	not	shown	in	the	figure,	that	measures	the
difference	between	the	pressures	at	its	two	inputs).	The	flow	line	on	the	axis
ends	in	O,	where	the	velocity	reduces	to	zero.	Such	a	point	is	called	a	stagnation
point	.

In	A,	which	is	sufficiently	far	from	O	on	the	side	of	the	tube,	the	fluid	moves
practically,	at	unaltered	speed.	This	is	consequently	the	velocity	we	want	to
measure;	let	us	call	it	υ.	The	pressure	is	also	the	undisturbed	one	p.	A	few	small
holes	are	drilled	into	the	sides	of	the	tube.	In	this	way,	the	pressure	inside	the
large	tube	is	also	p.	It	is	connected	to	the	second	input	of	the	differential
manometer.



We	now	apply	the	Bernoulli	theorem	to	the	fluid	flow	filament	in	O,	between
point	O	and	any	point	upstream	where	the	fluid	is	undisturbed.	There,	the
pressure	is	p	and	the	velocity	υ.	Let	p	O	be	the	pressure	in	O.	The	Bernoulli
theorem	then	gives

As	we	said,	we	measure	the	pressure	difference,	that	is

which	is	called	the	stop	pressure,	from	which	we	find	the	velocity

	 (1.35)

The	device,	as	described,	was	the	product	of	Ludwig	Prandtl	(1875–1953).	It
is	commonly	used	to	measure	the	velocity	of	fluid	currents	or	of	objects	moving
in	a	fluid.	Notice	that,	for	example,	in	the	case	of	the	plane,	the	measured
velocity	is	relative	to	the	air,	not	to	the	ground.	The	effects	of	viscosity	are,	in
general,	negligible.

Hydrodynamic	paradox	.	We	conclude	with	a	final	example,	which,	in
contrast	with	the	previous	ones,	is	only	a	curiosity.	Figure	1.23	shows	the	section
of	a	device	made	of	two	parts.	The	upper	part	is	a	tube	to	which	a	perforated	disk
is	attached.	The	tube	is	connected	to	a	pump	blowing	air	at	speed	v.	The	lower
part	is	another	disk,	equal	to	the	first	one	and	kept	parallel	at	a	close	distance
from	it.	The	disks	are	horizontal.	One	would	think	that	the	air	blowing	should
push	away	the	lower	disk.	However,	just	the	opposite	happens.	The	lower	disk	is
attracted	and	reaches	an	equilibrium	position	at	a	certain	distance	from	the	upper
one.

Fig.	1.23 Hydrodynamic	paradox

The	explanation	is	simple.	The	high-speed	air	jet	that	comes	out	of	the	tube



expands	between	the	two	disks.	The	fluid	elements	follow	radial	trajectories
towards	the	periphery.	Their	velocity	decreases,	becoming	practically	zero	on	the
rim	of	the	disks.	Now,	we	apply	the	Bernoulli	theorem	to	two	points	of	a	radial
flow	filament,	one	on	the	axis,	one	on	the	rim.	Call	p	the	pressure	and	υ	the
velocity	at	the	first	point.	At	the	second	point,	the	pressure	is	the	atmospheric
one	p	a	and	the	velocity	is	zero.	We	have

Hence,	p	≪	p	a	.	The	pressure	difference	attracts	the	disk,	and	the
corresponding	force	equilibrates	the	weight	(provided	this	is	not	too	large).

1.10	 D’Alembert	Paradox
Consider	a	solid	sphere	fully	immersed	in	a	perfect	fluid	flowing	with	horizontal
velocity	v.	The	diameter	of	the	sphere	is	small	compared	to	the	extension	of	the
current.	The	velocity	field	is	stationary	and,	where	not	perturbed	by	the	sphere,
uniform.	Figure	1.24	shows	the	flow	pattern	around	the	sphere.	Suppose	the
weight	to	be	balanced	by	the	buoyancy	,	so	that	the	sphere	is	in	equilibrium	in
the	vertical	direction.

Fig.	1.24 Streamlines	around	a	sphere	in	an	inviscous	and	incompressible	fluid

The	streamlines	that	are	parallel	and	equidistant	upstream	and	downstream
then	open	and	close	again	symmetrically	around	the	body.	The	middle	streamline
upstream	terminates	at	the	point	A.	The	fluid	stops	at	this	point,	which	is	the
forward	stagnation	point	.	Let	p	A	be	the	pressure	in	A	and	p	the	pressure
upstream	in	the	undisturbed	region	along	the	same	streamline	.	For	the	Bernoulli
theorem,	we	have

	 (1.36)

Namely,	the	pressure	in	A	is	larger	than	in	the	unperturbed	flow	by	 .



The	overpressure	produces	a	force	pushing	the	body	in	the	direction	of	the
current.	However,	we	must	also	look	at	the	downstream	side.	At	point	C,	which
is	symmetric	to	A	and	is	the	backward	stagnation	point,	the	pressure	is,	say,	p	C	.
Downstream,	in	the	unperturbed	region	along	the	same	streamline,	the	pressure
is	p.	The	Bernoulli	theorem	applied	along	this	streamline	gives

	 (1.37)
We	see	that	p	C	is	equal	to	p	A	.	Namely,	the	pressure	forces	on	the	middle

plane	balance	each	other.	The	resultant	is	zero.	We	should	also	consider,
however,	the	effects	of	the	pressure	forces	all	around	the	body.	Let	us	fix	our
attention	on	one	streamline.	Being	the	flow	stationary,	this	is	also	a	path	line,
namely	the	trajectory	of	the	fluid	elements.	Being	the	trajectory	curved,	the	fluid
element	accelerates.	The	acceleration	is	due	to	a	force	exerted	by	the	body.	The
force	is	normal	to	the	surface	because	there	is	no	viscosity.	The	fluid	elements
exert	a	force	on	the	body	that	is	equal	and	opposite,	for	the	action	and	reaction
law.	In	conclusion,	a	force	normal	to	the	surface	acts	at	every	point	of	the	surface
of	the	body.	Both	the	magnitude	of	the	force	and	whether	it	is	directed	towards
or	outside	the	surface	depend	on	the	flow	pattern.	Clearly,	the	resultant	pressure
force	in	the	forward	part	of	the	body	BAD	is	in	the	direction	of	the	current,	and
the	resultant	of	the	backward	part	BCD	is	opposite	to	the	current.	In	the	present
case,	the	flow	pattern	is	perfectly	symmetric,	and	consequently,	the	magnitudes
of	the	two	resultants	are	equal;	they	balance	each	other.	The	sphere	does	not
move.

The	argument	we	have	just	developed	was	developed	in	1752	by	Jean	le
Rond	D’Alembert	(1717–1783).	To	be	sure,	he	proved	the	theorem	for	the
equivalent	case	of	a	sphere	moving	in	a	fluid	at	rest.	He	proved	that	the	drag
force	on	a	symmetric	body	moving	at	constant	velocity	in	an	inviscous	and
incompressible	fluid	is	zero.	The	conclusion	looks	to	be	in	conflict	with
evidence	and	is	known	as	the	D’Alembert	paradox	.	We	know	that	all	solid
bodies	immersed	in	a	current	are	subject	to	a	drag	force,	which	can	be	larger	or
smaller,	but	is	never	zero.	This	is	due	to	viscosity,	which	is	neglected	in	the
D’Alembert	theorem,	but	is	always	present.	Viscosity	has	two	consequences.
First,	the	forces	exerted	by	the	fluid	elements	lapping	the	body	have	components
tangent	to	the	surface.	The	tangent	components	are	in	the	direction	of	the
current,	both	in	the	forward	and	in	the	backward	parts	of	the	body.	Second,	the
flow	pattern	becomes	forward	backwards	asymmetric,	with	the	effect	that	the
pressure	forces	do	not	balance	any	more.	We	shall	study	these	phenomena	in
Sects.	1.13	and	1.14.



1.11	 Laminar	Viscous	Flow
We	shall	now	study	fluid	motions	in	the	presence	of	viscosity.	We	start	by
considering	a	geometrically	simple	case.	An	incompressible	fluid	of	viscosity	η
is	included	between	two	parallel	horizontal	plates,	AA	and	BB	in	Fig.	1.25.	We
keep	BB	still	and	have	AA	moving	with	velocity	v	0	parallel	to	its	plane.	The
fluid	layer	in	immediate	contact	with	AA	remains	adherent	to	the	plate	and
moves	with	its	constant	velocity	v	0.	Similarly,	the	layer	in	contact	with	BB	has
zero	velocity.	We	can	imagine	the	rest	of	the	fluid	divided	into	parallel	layers,
the	velocities	of	which	vary	continuously	from	zero	to	v	0.	Under	these
conditions,	the	motion	is	said	to	be	laminar	.	The	situation	is	realized,	for
example,	when	two	parallel	metallic	surfaces	slide	one	over	the	other,	being
separated	by	a	lubricant.	Another	example	of	laminar	flow	is	in	the	viscometer
we	considered	in	Sect.	1.6.	In	this	case,	the	fluid	layers	are	concentric	cylinders,
which	rotate	about	the	axis.

Fig.	1.25 Laminar	flow	between	two	plane	surfaces

The	geometry	we	have	just	considered	is	simple	to	describe	but	difficult	to
put	into	practice.	The	condition	most	usually	met,	and	that	which	we	shall	now
study,	is	the	flow	of	a	fluid	within	a	cylindrical	duct,	of	radius	R.	In	this	case,	we
can	imagine	the	fluid	divided	in	cylindrical	layers,	moving	in	the	direction	of	the
axis,	each	at	a	possibly	different	speed.	In	particular,	the	layer	in	contact	with	the
wall	is	at	rest.	The	velocity	of	the	layers	increases	while	moving	inside,	and	is	at
a	maximum	at	the	axis.	The	flow	we	are	considering	is	laminar.

As	a	matter	of	fact,	the	laminar	flow	is	not	the	only	possible	one.	It	is	the
flow	occurring	for	velocities	below	certain	limits,	which	depend	on	the
geometrical	dimensions	of	the	solid	bodies	immersed	in	or	limiting	the	flow.	As
we	shall	see	in	the	following	sections,	when	the	velocity	becomes	higher	than
these	limits,	the	regular	layers’	stratification	is	destroyed	by	the	formation	of
vortices,	which	mix	up	the	fluid.	This	regime	is	called	a	turbulent	flow	.	In	this
section,	we	shall	study	the	laminar	plane	and	cylindrical	flows.



The	plane	laminar	flow	is	the	simplest	geometrically.	With	reference	to
Fig.	1.25,	we	call	x	the	distance	from	the	plate	AA.	Consider	two	fluid	elements,
namely	two	infinitesimal	portions	of	two	adjacent	layers	of	infinitesimal	area	dS.
They	exert	one	on	the	other	equal	and	opposite	forces	directed	to	slow	down	the
relative	motion,	as	we	discussed	in	Sect.	1.6.	The	force	per	unit	surface,	the
shear	stress	,	is,	for	Eq.	(1.23)

	 (1.38)
The	symmetry	of	the	problem	requires	the	stress	to	be	the	same	in	all	the

separation	surfaces	between	the	layers,	in	other	words,	τ	to	be	independent	of	x.
Then,	for	Eq.	(1.38),	the	gradient	of	the	velocity	should	be	independent	of	x	too,
namely	 .	Through	integration,	we	have	 ,	where	a	and	b
are	the	integration	constants.	We	find	them	imposing	the	boundary	conditions
υ	=	0	for	x	=	0	and	υ	=	υ	0	for	x	=	h.	In	conclusion,	we	have

	 (1.39)
The	velocity	varies	linearly	with	the	distance	from	the	plate,	as	shown	in

Fig.	1.25.
We	shall	now	consider	the	flow	in	a	cylindrical	duct.	From	the	historical

point	of	view,	we	observe	that,	even	if	the	existence	of	two	types	of	flow,
laminar	and	turbulent,	was	known,	the	first	precision	experiments	were
performed	by	the	German	engineer	Gotthilf	H.L.	Hagen	(1797–1884),	who
published	his	results	in	1839.	The	same	results	were	independently	obtained	by
the	French	physicist	and	physiologist	Jean	L.M.	Poiseulle	(1797–1869),	who
published	in	1840.

Consider	the	motion	of	a	fluid	in	a	horizontal	cylindrical	duct,	of	circular
section	of	radius	R,	in	a	laminar	regime.	Consider	a	length	l	of	the	tube	and	the
pressures	p	1	and	p	2	at	the	two	extremes.	The	fluid	moves	under	the	action	of
the	pressure	difference	 ,	called	the	pressure	loss	.	The	fluid	element’s
velocity	v	being	parallel	to	the	axis	of	the	tube,	its	magnitude	υ	is	a	function	of
the	distance	r	from	the	axis.	We	call	υ	m	its	mean	value.	In	practice,	one
measures	the	volumetric	flow	rate	Q	V	,	which	is	the	volume	of	fluid	going
through	a	section	in	a	second.	The	mean	velocity	is	the	volumetric	flow	rate
divided	by	the	section.

Hagen	used	copper	tubes	a	few	meters	long	and	with	diameters	of	a	few
millimeters.	Poiseuille,	who	was	interested	in	blood	flow	through	the	capillary
veins,	experimented	with	smaller	diameters,	of	a	few	tenths	of	a	millimeter	(that



is,	the	diameter	of	a	capillary	vein).	Both	authors	established	that	the	volumetric
flow	rate	is	directly	proportional	to	the	pressure	drop	and	to	the	fourth	power	of
the	radius	and	inversely	to	the	length	of	the	tube.	The	Hagen-Poiseuille	law	is

	 (1.40)
where	η	is	the	fluid	viscosity	.	Intuitively,	one	might	expect	Q	V	to	be
proportional	to	the	tube	section,	namely	to	the	second	power	of	the	radius.	We
shall	understand	the	reason	for	the	fourth	power	with	the	following	analysis.

As	we	have	already	stated,	we	can	consider	the	fluid	to	be	divided	in	coaxial
layers,	moving	with	different	velocities.	As	a	consequence	of	the	symmetry	of
the	problem,	the	magnitude	of	the	velocity	is	a	function	of	the	distance	from	the
axis	r	alone.	This	is	the	function,	call	it	υ(r),	we	now	want	to	find.	We	can	write
Eq.	(1.23)	for	the	shear	stress	as

	 (1.41)
Consider	the	fluid	volume	in	the	cylinder	coaxial	with	the	tube	of	radius	r

and	length	l.	The	force	acting	on	its	surface	has	magnitude	equal	to	the	shear
stress	τ,	Eq.	(1.41),	times	its	surface,	2πrld,	and	direction	parallel	and	opposite	to
the	velocity.	As	the	regime	is	stationary,	the	velocity	is	constant	and	the	resultant
force	must	be	zero.	The	equal	and	opposite	force	is	due	to	the	pressure	difference
Δp	between	the	two	faces	of	the	cylinder.	Its	magnitude	is	Δp	times	the	area	of	a
face	πr	2.	We	can	write

or

Through	integration,	we	get

We	determine	the	integration	constant	from	the	boundary	condition	that	the
velocity	is	zero	on	the	surface	of	the	tube,	namely	υ(R)	=	0.	Finally,	we	have

	 (1.42)
We	have	thus	found	that	the	velocity	field	has	a	parabolic	profile,	as	shown

in	Fig.	1.26.	The	velocity	varies	from	zero	on	the	surface	to	a	maximum	value	on



the	axis,	equal	to	 .

Fig.	1.26 The	velocity	field	for	a	laminar	flow	in	a	cylindrical	duct

Let	us	now	determine	the	volumetric	flow	rate	Q	V	.	We	must	take	into
account	the	dependence	of	the	velocity	on	the	distance	from	the	axis,	which	we
have	just	found.	Consider	the	circular	zone	with	its	center	at	the	axis	and
radiuses	r	and	r	+	dr.	Its	area	is	2πrdr.	The	volume	of	fluid	crossing	this	area	in
one	second	is	the	volume	of	a	cylindrical	annulus	with	that	area	as	the	basis	and
height	equal	to	the	velocity	of	the	fluid	at	r,	namely	 .	Using
Eq.	(1.42)	for	υ(r),	we	have

The	volumetric	flow	rate	is	the	integral	of	this	expression	between	0	and	R,
namely

The	integral	on	the	right	hand	side	is	immediately	done,	giving	Eq.	(1.40),
the	Hagen-Poiseuille	law	.	We	now	understand	that	the	reason	why	the
volumetric	flow	rate	is	proportional	to	the	fourth	power	of	the	radius	of	the	duct
is	the	parabolic	profile	of	the	velocity	field.	Increasing	the	radius,	the	flow	rate
increases	faster	than	the	section,	because	the	central	portion,	in	which	the
velocities	are	larger,	becomes	a	larger	fraction	of	the	total.

We	now	express	the	mean	velocity	υ	m.	The	flow	rate	being	the	product	of	υ

m	and	the	area	of	section	πR	2,	we	have

	 (1.43)
which	tells	us,	in	particular,	that	the	mean	fluid	velocity	is	proportional	to	the



pressure	gradient	 .
A	simple	demonstration	of	the	pressure	drop	in	a	fluid	moving	through	a

horizontal	tube	is	shown	in	Fig.	1.27.	If	we	take	into	account	that	Q	V	is	the	same
at	all	the	points	of	the	tube,	the	Hagen-Poiseuille	law	tells	us	that	the	pressure
decreases	along	the	tube	proportionally	to	the	distance.	The	device	is	a	glass	tank
full	of	water	(colored	to	be	easily	seen)	up	to	the	height	h.	A	horizontal	tube	is
connected	to	the	tank	near	its	bottom.	A	few	vertical	tubes	at	equal	distances
allow	for	visual	evaluation	of	the	pressure	along	the	horizontal	tube,	from	the
heights	of	the	water	columns	(h	1,	h	2,	h	3).	The	pressure	at	the	bottom	of	the
tank	is	p	a		+	ρgh	(p	a	is	the	atmospheric	pressure)	and	p	a	at	the	end	of	the	tube.
One	observes	that	the	pressure	decreases	linearly	along	the	tube.	To	be	precise,
there	is	always	a	small	pressure	drop	between	the	bottom	of	the	tank	and	the
beginning	of	the	tube.	For	this	reason,	the	line	joining	the	heights	of	the	columns
extrapolates	a	bit	below	the	free	surface	in	the	tank.

Fig.	1.27 Demonstration	of	the	linear	pressure	drop	foreseen	by	the	Hagen-Poiseuille	law

It	is	sometimes	interesting	to	know	the	mass	crossing	a	section	of	the	duct
per	unit	time,	called	mass	flow	rate	Q	m	.	This	is	simply	the	volumetric	flow	rate
multiplied	by	the	density	ρ,	because	this	is	constant

	 (1.44)
This	expression	and	the	Hagen-Poiseuille	law	contain	quantities	depending

on	the	geometry	of	the	tube	and	on	the	applied	pressure	drop,	which	are	the	same
for	both	expressions,	a	quantity	that	depends	on	the	fluid,	which	is	the	viscosity
η	for	Q	V	,	the	ratio	η/ρ,	for	Q	m	.	The	latter	enters	into	several	fluid	dynamics
expressions	and	is	called	kinematic	viscosity	or	relative	viscosity



	 (1.45)
To	avoid	confusion	when	necessary,	η	is	called	dynamic	viscosity	.	The	units

of	the	kinematic	viscosity	are	the	m2s.	In	terms	of	kinematic	viscosity,	Eq.	(1.45)
is	obviously

	 (1.46)

1.12	 Turbulent	Flow.	Reynolds	Number
The	flow	of	a	fluid	in	a	pipe	is	laminar,	as	we	have	considered	so	far,	only	if	the
fluid	velocity	is	small	enough.	If	the	velocity	exceeds	certain	limits,	which	we
are	going	to	discuss,	the	flow	becomes	turbulent.	We	begin	by	discussing	a
simple	experiment.	Figure	1.28	shows	a	tank	containing	a	liquid,	say	water,
connected	at	its	lower	portion	to	a	horizontal	tube,	through	which	we	have	the
water	running.	A	second	vessel,	at	a	higher	position,	also	contains	water,	colored
to	distinguish	it.	Its	bottom	is	connected	to	a	tube	of	small	cross-section,	which
is	used	to	inject	an	axial	flow	into	the	principal	water	current	from	the	bigger
tank.	A	tap	R	can	be	used	to	reduce	or	increase	the	flow	rate.	All	the	parts	are
made	of	glass	to	allow	for	easy	observation.

Fig.	1.28 Experiment	to	observe	the	laminar	to	turbulent	flow	transition

Initially,	R	is	closed.	If	we	open	it	a	bit,	we	observe	a	colored	water	filament
flowing	at	the	axis	of	the	horizontal	tube.	It	keeps	its	identity,	without	mixing
with	the	main	current,	even	if	the	tube	is	rather	long.	If	we	gradually	open	the
tap	further,	the	velocity	of	the	colored	filament	continually	increases,	becoming
larger	and	larger	than	the	speed	of	the	main	current,	with	which	it	is	in	contact.
Still,	the	filament	maintains	its	identity.	The	flow	is	laminar.	The	situation	is
stable	under	these	conditions;	if,	for	example,	we	give	a	shock	to	the	device,



creating	spurious	motions	in	the	two	fluids	and	causing	them	to	mix,	we	observe
that,	after	a	while,	the	flow	readjusts	automatically	to	the	previous	condition;	the
two	flows	separate.

However,	when	the	relative	velocity	of	the	two	fluids	reaches	a	well-
determined	value	(we	can	control	the	stability	of	this	value	with	repeated
experiments),	the	regime	changes.	The	first	change	is	that	the	colored	filament	is
no	longer	straight;	it	develops	oscillations,	which	are	more	or	less	periodic	and
advance	with	the	filament.	The	regime	is	no	longer	stationary.	If	the	relative
velocity	increases	further,	the	oscillations	become	faster	and	more	chaotic,	then
vortices	develop	and	the	two	fluids	get	mixed.	The	regime	becomes	turbulent	.
In	the	turbulent	flow,	the	velocity	of	the	fluid	elements	varies	in	an	irregular	and
chaotic	way.	In	the	description	of	this	motion,	we	shall	use	a	mean	velocity,
mediated	over	periods	long	enough	to	smooth	the	chaotic	fluctuations.

As	opposed	to	that	of	the	laminar	flow,	the	description	of	the	turbulent	flow
presents	enormous	mathematical	difficulties,	which	cannot	be	handled	with
analytical	methods,	even	in	the	simplest	cases.	The	flow	patterns	in	several
relevant	situations	can	be	found	with	numerical	computations	using	very
powerful	computers.	Even	so,	the	methods	based	on	the	physical	dimensions	of
the	parameters	are	important	and	we	shall	exploit	them	in	the	following.

Consider	once	more	the	flow	through	a	horizontal	tube.	Figure	1.26	shows
the	velocity	field	in	the	laminar	regime.	To	characterize	the	transition	to	the
turbulent	flow,	we	shall	develop	simple	arguments	based	on	the	physical
dimensions	of	the	quantities	of	the	problem.	Clearly,	the	flow	regime	depends	on
the	characteristics	of	the	fluid	and	the	duct,	and	on	the	relative	velocity.

The	fluids	have	two	physical	properties,	the	density	ρ	and	the	viscosity	η.
The	relevant	quantity	of	the	tube	is	its	diameter	D,	while	the	relative	velocity	is
the	mean	velocity	υ	of	the	fluid	(its	mean	value,	as	stated	above).	Hence,	we
must	deal	with	four	physical	quantities	with	the	dimensions

	 (1.47)
We	observe	that	the	quantities	that	characterize	the	regime,	for	example,	the

transition	from	a	linear	to	a	turbulent	flow,	are	complicated	functions	of	our	four
quantities.	Consequently,	their	arguments	must	be	pure	numbers.	Let	us	thus
search	a	dimensionless	combination	of	the	four	quantities.	First,	we	observe	that
the	dimension	of	the	mass	can	be	eliminated	only	by	taking	the	ratio	between
viscosity	and	density,	namely	the	kinematic	viscosity	ν	=	η/ρ.	Its	dimensions	are	

.	Once	more,	we	have	only	one	way	to	eliminate	the	dimension	of

time,	namely	dividing	υ	by	ν:	 .	Finally,	we	eliminate	the	length,



multiplying	by	the	diameter	D.	We	have	thus	found	the	unique	dimensionless
combination	of	the	four	quantities

	 (1.48)
which	is	called	the	Reynolds	number	,	after	Osborne	Reynolds	(1842–1912).

Our	simple	arguments	cannot	tell	us	the	values	of	the	Reynolds	number	at
which	the	flow	regimes	change.	These	values	must	be	determined
experimentally,	as	we	shall	soon	see.	The	above	arguments,	however,	tell	us	that,
if	we	consider	different	fluids,	in	cylindrical	ducts	of	different	sections	and	with
different	velocities,	the	flow	regime	is	the	same	if	the	Reynolds	number	has	the
same	value.	Consequently,	for	example,	the	velocity	of	a	regime	change	is
inversely	proportional	to	the	radius	of	the	tube;	it	is	twice	as	large	in	a	tube	twice
as	thin.	That	velocity	is,	in	addition,	proportional	to	the	viscosity;	thicker	fluids
maintain	the	laminar	flow	up	to	larger	velocities.

As	we	have	seen,	in	the	laminar	flow	of	a	fluid	in	a	tube,	the	velocity	profile
is	parabolic,	as	in	Fig.	1.26.	The	layer	in	contact	with	the	wall	adheres	to	it	and
is	at	rest;	the	velocity	gradually	increases,	moving	inwards	and	becoming
maximized	at	the	axis.	In	the	turbulent	flow,	the	layer	in	contact	with	the	wall	is
still	at	rest,	but	the	mixing	due	to	the	vortices	and	chaotic	motions	is	a	much
more	efficient	mechanism	for	increasing	the	mean	velocity	receding	from	the
walls.	Consequently,	the	mean	velocity	profile	is	as	shown	in	Fig.	1.29.	The
mean	velocity	is	independent	of	the	distance	from	the	axis	in	the	largest	section
of	the	tube.	It	goes	to	zero	in	a	thin	layer,	called	the	boundary	layer	,	which	has	a
thickness	δ	and	is	represented	in	a	shaded	tint	in	Fig.	1.29.	The	thickness	of	the
boundary	layer	is	always	much	smaller	than	the	tube	radius	and,	as	we	shall	see
in	Sect.	1.14,	decreases	with	an	increasing	Reynolds	number.

Fig.	1.29 The	mean	velocity	field	for	a	turbulent	flow	in	a	cylindrical	duct.	Boundary	layer	is	the	shaded
area

An	important	consequence	of	what	we	have	just	stated	is	that	the	relation
between	pressure	gradient	∆p/l	and	the	mean	velocity	of	the	fluid	is	independent



of	viscosity,	as	opposed	to	the	laminar	flow.	Once	more,	the	argument,	which
follows,	is	based	on	the	dimensions	of	the	physical	quantities.

The	physical	dimensions	of	the	pressure	gradient	are	 .	We
must	find	a	combination	of	the	other	physical	quantities	having	the	same
dimensions.	We	can	do	that	with	the	density,	mean	velocity	and	diameter	of	the
tube.	We	do	not	need	the	viscosity.	Their	unique	combination	with	the	right
dimensions	is	 .	It	is	standard	to	divide	it	by	two,	and	we	shall	use	
(that	is,	the	kinetic	energy	per	unit	mass	divided	by	the	tube	diameter).	We	can
conclude	that

	 (1.49)
where	f	is	a	dimensionless	coefficient,	called	the	Darcy	friction	factor	after
Henry	Darcy	(1803–1858).	The	friction	factor	is	a	function	of	the	unique
dimensionless	quantity	of	the	problem,	namely	the	Reynolds	number.

Written	explicitly,	the	Darcy	friction	factor	defined	by	Eq.	(1.49)	is

	 (1.50)
We	notice	here	that,	even	if	the	viscosity	does	not	have	an	effect	on	the

relation	between	the	pressure	gradient	and	flow	velocity,	its	effects	are	relevant
within	the	boundary	layer.	Within	this	layer,	in	fact,	the	velocity	varies	very
rapidly,	and	consequently,	the	shear	stresses	are	sizeable.

In	the	laminar	flow,	when	the	Hagen-Poiseuille	law	holds,	the	friction	factor
is	inversely	proportional	to	the	Reynolds	number.	If	we	substitute	Eq.	(1.42)	for
the	flow	velocity	and	Eq.	(1.48)	for	the	Reynolds	number	in	Eq.	(1.50)	we	have

	 (1.51)
a	very	simple	expression	indeed.

We	shall	now	discuss	the	main	characteristics	of	the	friction	factor	as	a
function	of	the	Reynolds	number.	These	are	the	result	of	a	series	of	experiments
starting	with	those	conducted	by	G.	Hagen	between	1839	and	1869.

Figure	1.30	shows	the	behavior	of	the	friction	factor	in	cylindrical	tubes	with
two	types	of	internal	surface.	The	continuous	curve	is	for	a	smooth	surface,	the
conditions	under	which	the	above	discussion	applies,	the	dotted	curve	is	for
rough	surfaces,	like	in	a	concrete	duct,	with	a	particular	value	of	roughness,
taken	as	an	example.	Notice	that	both	scales	are	logarithmic.



Fig.	1.30 Darcy	friction	factor	versus	Reynolds	number.	Continuous	curve	Smooth	tube.	Dotted	curve
Rough	tube	with	ε/D	=	0.02

Firstly,	notice	that	a	constant	friction	factor,	which,	graphically,	is	a
horizontal	line	in	the	diagram,	would	mean	a	pressure	drop	proportional	to	the
square	of	the	flow	velocity.	When	the	Hagen-Poiseuille	law	holds,	the	friction
coefficient	is	inversely	proportional	to	the	Reynolds	number,	Eq.	(1.51).	This
function	is	represented	in	the	log-log	diagram	by	a	straight	line	of	slope	−1.
Experiments	show	that	this	is	really	the	case	for	Re	<	2000	(approximately).
Under	these	conditions,	the	flow	is	laminar	.	If	the	Reynolds	increases,	the	flow
enters	into	a	chaotic	and	unstable	regime,	called	the	critical	zone	or	transition
region	.	This	is	defined	as	the	interval	2000	<	Re	<	4000.	In	this	region,	it	is	not
even	possible	to	find	a	single	curve	representing	f(Re),	because	the	friction	factor
does	not	only	depend	on	the	Reynolds	number,	but	also	on	the	tube	diameter	and
fluid	viscosity.	For	still	higher	Reynolds	numbers,	Re	>	4000	(approximately),
the	flow	becomes	turbulent	.	The	friction	factor	can	again	be	represented	by	a
universal	curve,	provided	the	surface	is	smooth.

If	the	surface	of	the	tube	is	not	smooth,	a	further	quantity	with	the	physical
dimensions	of	a	length	enters	the	game,	the	roughness	ε,	which	is	defined	as	the
mean	size	of	the	surface	irregularities.	The	corresponding	dimensionless
parameter	is	the	ratio	ε/D.	The	roughness	has	important	influence	on	the
boundary	layer	and,	as	a	consequence,	on	the	friction	factor.	The	case	of
ε/D	=	0.02	is	shown,	as	an	example,	as	the	dotted	curve	in	Fig.	1.30.	We	see	that
in	the	turbulent	region,	f	is	roughly	constant,	at	the	value	of	0.05.	The	pressure
drop	is	proportional	to	the	square	of	the	flow	velocity.



1.13	 Drag	at	Small	Reynolds	Numbers
We	shall	now	consider	the	uniform	motion	of	a	solid	body	in	a	fluid	at	rest	in	an
inertial	frame.	We	might	consider	the	same	problem	in	a	frame	moving	with	the
body,	in	which	the	fluid	moves	at	constant	speed.	For	the	relativity	principle,	the
drag	force	acting	on	a	body	moving	in	a	fluid	or	on	a	body	in	a	flowing	fluid
should	be	the	same.	Notice,	however,	that	this	conclusion	holds	as	long	as	the
influence	of	the	walls	containing	the	fluid	can	be	neglected,	namely	if	they	are
far	enough	apart.	Indeed,	relative	to	the	walls,	the	body	that	moves	in	one	case	is
at	rest	in	the	other.

In	our	discussion,	we	shall	always	consider	a	body	completely	immersed	in	a
homogeneous	fluid	to	have	a	sufficiently	large	extension.	We	assume	that	the
vertical	forces,	buoyancy	and	weight,	balance	each	other.	In	the	case	of	the
D’Alembert	paradox	discussed	in	Sect.	1.10,	the	acting	forces	were	the	pressure
forces.	In	addition,	we	now	have	the	viscous	force.

The	problem	is	similar	to	that	of	the	flow	in	a	duct	and	we	shall	treat	it
similarly,	using	dimensional	arguments.	The	physical	quantities	of	the	game	are,
once	more,	the	density	ρ	and	the	viscosity	η	of	the	fluid,	the	velocity	υ	and	one
geometric	dimension	of	the	body.	For	the	simple	shape	we	shall	consider,	which
will	be	a	sphere,	we	shall	take	the	diameter	D.	Clearly,	the	only	dimensionless
combination	is,	again,

	 (1.52)
which	is	also	called	the	Reynolds	number	.

Consider	this	question:	under	which	conditions	are	the	flow	patterns	about
two	geometrically	similar	bodies	geometrically	similar?	Consider,	for	example,
two	spheres	of	different	radiuses	immersed	in	two	different	fluids,	say,	a	gas	and
a	liquid.	The	question	is:	under	which	conditions	do	the	streamlines	in	the	two
cases	have	the	same	shape?	When	these	conditions	are	satisfied,	we	speak	of
dynamic	similarity	.	The	answer,	which	we	give	without	demonstration,	is	that	in
any	pairs	of	geometrically	similar	points	in	the	two	cases,	the	ratio	of	the	two
acting	forces,	the	pressure	drag	(that	is	normal	to	the	surface	of	the	element)	and
the	viscous	drag	(that	is	the	shear	stress	tangent	to	the	surface),	should	be	the
same.	This,	indeed,	happens	for	equal	values	of	the	Reynolds	number,	for
completely	immersed	bodies.	This	is	an	important	conclusion	that	has	relevant
practical	applications.	For	example,	we	can	determine	the	behavior	of	an
airplane	wing	without	having	to	build	the	airplane.	Rather,	we	can	test	a	model
of	reduced	dimensions	at	a	velocity	that	gives	the	same	Reynolds	number.	For
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this	purpose,	wind	tunnels	are	used	to	test	small-scale	airplanes	and	cars.	The
method	works	as	long	as	the	compressibility	of	the	fluid	can	be	neglected.

Let	us	now	consider	situations	in	which	the	viscous	drag	is	comparable	or
equal	to	the	pressure	drag.	This	happens	for	Reynolds	numbers	less	than	or
roughly	equal	to	one	(we	shall	be	more	precise	below).	These	conditions	can	be
satisfied	in	various	ways;	the	density	of	the	fluid	is	large	enough	(a	body	moving
in	honey	or	molasses,	for	example),	or	the	motion	is	very	slow,	or	the	size	of	the
body	is	very	small	(for	example,	the	fog	droplets	moving	in	air).	Under	these
conditions,	the	body	must,	so	to	speak,	open	up	its	way,	deforming	the	fluid
elements.	The	medium	appears	to	be	more	solid	than	the	fluid,	with	a	tendency
to	maintain	its	shape.	The	resistance	to	motion	is	mainly	due	to	the	forces
necessary	to	deform	the	fluid	elements.	The	resulting	drag	force	is	proportional
to	the	velocity.	We	observe,	in	addition,	that	for	the	small	values	of	the	Reynolds
number,	we	are	considering,	the	stress	field	that	develops	in	the	medium	extends
to	large	distances	from	the	body.	Contrastingly,	for	large	Reynolds	numbers,	as
we	shall	see,	the	deformation	of	the	fluid	is	mainly	limited	to	the	boundary	layer
,	very	close	to	the	object.	As	a	consequence,	for	small	Reynolds	numbers,	the
influence	of	the	surrounding	walls	can	be	neglected	only	if	they	are	at	rather
large	distances.

The	fluid	dynamics	differential	equation,	which	is	called	the	Navier-Stokes
equation	after	those	who	discovered	it,	cannot,	in	general,	be	solved	analytically.
However,	the	solution	is	known	in	the	case	of	the	sphere.	Consider	a	spherical
rigid	body	of	radius	r	and	of	perfectly	smooth	surface,	moving	in	a	fluid	with
constant	velocity	υ.	The	expression	of	the	viscous	drag	in	the	laminar	regime
was	theoretically	determined	by	George	Gabriel	Stokes	(1819–1903)	in	1851.	It
is	called	the	Stokes	law	.	Its	expression	is	very	simple,	namely

	 (1.53)
We	shall	now	discuss	its	limits	in	regard	to	validity	and	its	experimental

verifications.
We	preliminarily	state	that	Stokes	derived	his	law	according	to	the	following

assumptions:

The	medium	is	homogeneous;	in	practice,	the	non-homogeneities,	if	present,
should	be	much	smaller	than	the	diameter	of	the	sphere.	While	this	condition
is	satisfied	in	liquids,	it	is	not	necessarily	so	in	gases.	In	a	gas,	the	mean
distance	travelled	by	a	molecule	between	two	collisions	with	another	one	is
called	the	mean	free	path	.	For	the	atmospheric	gases	at	normal	temperature
and	pressure	(to	which	it	is	inversely	proportional),	the	mean	free	path	is
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about	l	=	70	nm.	Robert	Millikan	experimentally	determined	in	1913	that	the
corrections	to	the	Stokes	law	for	spheres	of	radius	r	are	of	the	order	of	r/l.
This	is,	for	example,	<1	%	for	radiuses	>5	µm.

	
The	medium	is	unlimited;	in	practice,	the	surrounding	walls	must	be	far
enough	apart	to	have	negligible	effects.

	
The	sphere	is	rigid	and	its	surface	is	smooth.

	
The	fluid	does	not	slip,	but	remains	adherent	to	the	sphere	surface.

	
The	velocity	of	the	sphere	is	small,	such	that	the	resistance	to	motion	is	due
only	to	viscosity.

	
Under	these	hypotheses,	the	Stokes	theory	predicts	Eq.	(1.53)	to	be

rigorously	valid.	An	accurate	experimental	verification	only	came	about	more
than	half	a	century	later,	in	1910,	when	Harold	De	Forest	Arnold	(USA,	1883–
1933)	undertook	a	series	of	measurements	on	the	fall	velocity	of	small	spheres	in
water	and	in	alcohol.	The	forces	acting	on	the	sphere	are	the	weight	directed
vertically	down	 ,	where	 	is	the	density	of	the	sphere,	the	buoyancy

vertical	upwards	 ,	and	the	viscous	drag,	opposite	to	motion,	hence
vertically	upwards.	During	their	fall,	the	spheres	soon	reach	the	regime	velocity,
in	which	the	resultant	force	is	zero,	namely

	 (1.54)
We	can	verify	the	Stokes	law	by	measuring	the	velocity,	the	two	densities

and	the	radius.
Arnold	found	an	ingenious	method	for	producing	small,	perfectly	spherical,

droplets.	He	used	the	so-called	Rose	alloy	,	a	metal	that	melts	at	82	°C	and	is
consequently	liquid	at	the	boiling	water	temperature.



Arnold	put	some	of	this	metal	into	a	vertical	glass	tube	terminating	at	its
lower	end	with	a	long	capillary	tip.	He	suspended	the	capillary	segment	in	a
second	vertical	tube	about	70	cm	long	and	3	cm	in	diameter.	He	filled	the	larger
tube	with	water	and	heated	the	water	in	such	a	way	that	its	upper	surface	was
maintained	at	100	°C,	with	the	lower	part	being	about	60	°C.	Using	compressed
air,	he	produced	pressure	in	the	small	tube,	pushing	the	melted	metal	down	so	as
to	exit	through	the	capillary	tip	in	the	hot	water.	He	obtained	droplets	that	cooled
down	enough	to	become	solid	before	reaching	the	bottom	of	the	larger	tube.
Observed	with	a	microscope,	they	had	perfectly	spherical	shapes	and	smooth
surfaces.	The	success	of	the	Arnold	method	is	due	to	the	rather	slow	motion	of
the	droplets	and	to	the	gradual	decrease	of	the	temperature	of	the	water	through
which	they	fall.	The	uniform	cooling	tends	to	produce	a	homogeneous	structure,
while	the	small	velocity	allows	the	drops	to	keep	the	spherical	shape	they	have
taken	when	liquid.	The	measured	radiuses	were	between	20	µm	and	1	mm.

Arnold	measured	the	velocities	of	a	number	of	falling	spheres	of	different
diameters	and	compared	the	results	with	the	predictions	of	the	Stokes	law,	with	a
few	per	mille	accuracy.

Are	the	five	assumptions	in	Stokes	satisfied	in	Arnold’s	experiments?	This	is
certainly	the	case	for	the	first,	third	and	fourth	hypotheses.	The	second
assumption	is	satisfied	for	the	smaller	spheres,	but	only	approximately	for	the
larger	ones.	For	these,	however,	Arnold	used	a	correction	formula	that	had	been
experimentally	established	by	Landenburg.	In	conclusion,	the	first	four
conditions	are	satisfied.	Through	his	experiments,	Arnold	verified	that	the
Stokes	law,	Eq.	(1.55),	is	exactly	verified	when	the	fifth	condition	is	also
satisfied,	namely	for	a	small	enough	Reynolds	number,	up	to	Re	<	1.2.

1.14	 General	Expression	of	Drag
In	the	vast	majority	of	situations,	the	Reynolds	number	is	not	as	small	as	that
considered	in	the	previous	section.	In	general,	the	pressure	forces	are	larger	or
much	larger	than	the	viscous	force.	Consider	that	the	kinematic	viscosity	of	the
air	at	normal	temperature	and	pressure	is	about	 .	For	example,
for	a	sphere	of	5	cm	radius	moving	in	the	air	at	1	m/s,	the	Reynolds	number	is
about	7000.	Under	these	conditions,	the	pressure	drag	is	much	larger	than	the
viscous	drag.

One	should	not	think,	however,	that	the	effects	of	viscosity	are	negligible.
On	the	contrary,	they	are	crucial.	Indeed,	in	the	absence	of	viscosity,	the	fluid
elements	lap	the	surface	of	the	body	and	freely	move	relative	to	it.	Contrastingly,



(a)

(b)

in	the	presence	of	viscosity,	the	shear	stresses	make	the	fluid	elements	adhere	to
the	surface	of	the	body.	This	is	always	the	case,	even	for	extremely	small	values
of	viscosity.	This	means	that	the	fluid	particles	in	contact	with	the	body	are	at
rest;	the	farther	and	farther	the	particles	are	from	the	body,	the	more	their
velocities	increase,	up	to	the	point	of	equalling	the	velocity	of	the	unperturbed
fluid.	The	change	takes	place,	for	a	Reynolds	number	above	a	few	units,	in	a	thin
layer	near	to	the	surface,	which	is	the	boundary	layer	.	One	sees	that	the
boundary	conditions	of	the	velocity	fields	are	completely	different	for	a	real
fluid,	compared	to	an	ideal	fluid.	As	a	consequence,	the	flow	pattern	is	different
from	the	one	in	Sect.	1.10	and	the	pressure	forces	are	different	as	well.	In
particular,	their	resultant	is	not	zero	and	is,	indeed,	the	resistance	to	motion.	The
inviscous	flow	is	not	the	limit	of	the	viscous	one	for	viscosity	tending	to	zero.

The	boundary	layer	has	a	fundamental	role	in	the	behavior	of	the	flow.	Even
if	its	thickness	δ	cannot	be	precisely	defined	on	general	grounds,	it	is,	however,
found	that	it	is	a	decreasing	function	of	the	Reynolds	number.	It	can	be	shown
with	dimensional	arguments	that	it	is	approximately

	 (1.55)
where	a	is	a	linear	dimension	of	the	body.	For	example,	for	a	boundary	layer
of	a	sphere	of	diameter	a	=	10	cm	immersed	in	an	airflow	of	υ	=	30	m/s,	the
Reynolds	number	is	Re	=	2	×	105	and	the	thickness	of	the	boundary	layer	is
δ	≈	0.2	mm.

As	stated	above,	in	the	boundary	layer,	the	velocity	changes	from	zero	to	the
undisturbed	value.	The	velocity	gradient	in	the	boundary	layer	is	very	large	and
the	viscous	forces,	which	are	proportional	to	the	velocity	gradient,	are	intense.

Equation	(1.55)	also	tells	us	that,	for	Reynolds	numbers	of	the	order	of	one,
the	thickness	of	the	layer	becomes	comparable	with	the	size	of	the	body.	The
very	concept	of	the	boundary	layer	loses	its	meaning,	because	the	changes	of
velocity	gradually	take	place	in	a	wide	volume,	as	we	have	seen	in	the	previous
section.

For	Reynolds	numbers	larger	than	one,	the	effects	of	viscosity	are	twofold.

the	development	in	the	boundary	layer	of	forces	parallel	to	the	surface	of	the
body	opposite	to	the	direction	of	motion,	directly	due	to	the	friction	between
fluid	elements.	Their	resultant	is	the	viscous	drag	;

	
a	modification	of	the	geometry	of	the	streamlines,	which,	in	turn,	changes



the	pressure	forces	and	so	contributes	to	the	total	drag	with	a	force	that	we
shall	call	the	pressure	drag	.

	
The	resistance	of	the	fluid,	the	total	drag,	is	the	sum	of	the	two	contributions;

the	ratio	between	the	second	and	the	first	contribution	increases	with	the
Reynolds	number.

We	shall	now	discuss	the	total	drag	as	a	function	of	the	Reynolds	number.
We	start,	once	more,	with	a	dimensional	argument.	The	physical	quantities	of	the
problem	are

	 (1.56)
where	A	is	the	transverse	cross-section	of	the	body.	The	dimensions	of	the
drag	force	are	 .	Again,	there	is	one	combination	with	these

dimensions,	 .	The	drag	must	be	expressed	as	this	quantity	multiplied	by	a
function	of	null	physical	dimensions.	The	latter	must	be	a	function	of	the	sole
dimensionless	quantity,	which	is	the	Reynolds	number,	and	we	can	state	that	the
general	expression	of	the	drag	is

	 (1.57)
where	we	introduced	the	1/2	factor	to	follow	the	costumes.	The	function	C	D
is	the	drag	coefficient	.	It	must	be	determined	experimentally.	The	drag
coefficient	depends	on	the	shape	of	the	body	and	on	the	status	of	its	surface,
smooth	or	with	different	degrees	of	roughness.

We	shall	limit	the	discussion	to	a	smooth	surface	sphere.	Figure	1.31	shows
the	drag	coefficient	as	a	function	of	the	Reynolds	number.	Notice	that	both
scales	are	logarithmic.



Fig.	1.31 The	drag	coefficient	for	a	smooth	sphere	versus	a	Reynolds	number.	Letters	mark	the	different
flow	regimes	with	reference	to	Fig.	1.32

We	shall	now	examine,	in	a	qualitative	way,	how	the	flow	pattern	around	the
sphere	changes	as	the	Reynolds	number	increases.	These	changes	can	be
subdivided	into	several	flow	regimes	.	The	changes	from	one	regime	to	the	next
are	gradual	and	cannot	be	sharply	defined.	Figure	1.32	shows	a	series	of	cartoon
flow	patterns	with	increasing	Re.	The	corresponding	positions	on	the	drag
coefficient	curve	are	marked	with	the	same	letters	in	Fig.	1.31.

Fig.	1.32 Cartoon	showing	the	flow	patterns	around	a	sphere	in	different	regimes



Figure	1.32a	shows	the	flow	pattern	for	Re	<	1.	The	drag	coefficient	curve	in
Fig.	1.31	is	a	straight	line	with	a	slope	equal	to	−1.	In	a	log-log	diagram,	this
means	that	the	ordinate	is	inversely	proportional	to	the	abscissa.	This	is	just	what
we	expect,	because	the	drag	is	proportional	to	the	velocity	when	the	Stokes	law
holds	(for	shapes	other	than	a	sphere,	the	drag	force	in	this	regime	is
proportional	to	the	velocity	and	to	the	linear	dimensions	of	the	body	anyway).
Indeed,	if	we	substitute	the	Stokes	Eq.	(1.52)	for	the	drag	in	Eq.	(1.57)	and
A	=	πD	2/4	for	the	cross-section	of	the	sphere	of	diameter	D,	we	obtain

	 (1.58)
Under	these	conditions,	as	we	have	seen,	the	drag	force	is	almost	completely

a	viscous	drag.	The	streamlines	are	qualitatively	similar	to	the	inviscous	flow	of
Fig.	1.24.	Although	not	shown	in	the	figure,	the	velocity	increases	only
gradually	away	from	the	surface	of	the	sphere.	There	is	no	well-defined
boundary	layer	at	these	very	small	Reynolds	numbers.

Figure	1.32b	shows	the	flow	pattern	for	Re	=	2–5.	We	shall	use	as	an
example	here	and	for	the	following	regimes	the	velocity	of	a	1	cm	diameter	ball
in	the	air	at	normal	conditions	with	 .	Its	velocity	is	between	3
and	7.5	mm/s	in	this	range	of	Reynolds	numbers.	The	boundary	layer	has
developed;	the	pressure	drag	is	a	few	times	larger	than	the	viscous	drag.	The
flow	is	laminar,	boundary	layer	included.	The	streamlines	are	denser	near	the
points	B	and	D	on	the	transverse	section.	Here,	the	velocity	is	larger	and	the
pressure	smaller	than	in	the	undisturbed	fluid.	On	the	backside	of	the	sphere,	the
streamlines	rarefy,	the	velocity	decreases	and	the	pressure	increases.	In	other
words,	when	a	fluid	element	passes	from	the	forward	side	to	the	section	BD,	it	is
pushed	forward	by	a	pressure	difference	that	increases	its	kinetic	energy.	When	it
goes	to	the	back	region,	it	moves	against	an	increasing	pressure,	losing	kinetic
energy.	In	the	absence	of	dissipative	forces,	the	kinetic	energy	gained	in	the	first
phase	would	be	exactly	what	is	needed	to	overcome	the	pressure	increase	in	the
second	phase.	In	practice,	the	shear	stresses,	due	to	viscosity,	reduce	the	kinetic
energy	during	all	the	phases	of	the	motion.	This	happens	mainly	in	the	boundary
layer	in	which	the	shear	stresses	are	large.	Consequently,	the	flow	velocities	at
points	in	front	of	the	sphere	are	always	larger	than	at	the	symmetric	points	on	the
back.	The	streamlines	are	more	sparse	and	straighter	at	the	backside	of	the
sphere.	The	pressure	forces	are	smaller	at	the	back	than	at	the	front.	The
resulting	difference	is	the	pressure	drag.	This	increases	with	the	Reynolds
number	faster	than	foreseen	by	the	Stokes	law.

As	the	Reynolds	number	increases,	the	velocity	gradient	increases	for	two
reasons:	because	the	difference	of	the	velocity	of	the	fluid	in	contact	with	the



surface	and	in	the	main	stream	increases	and	because	the	thickness	of	the
boundary	layer,	in	which	the	change	happens,	diminishes.	The	shear	stresses,
which	are	proportional	to	the	velocity	gradient,	consequently	increase	in	the
boundary	layer.	These	stresses	act	on	the	fluid	elements,	slowing	them	down
considerably,	especially	near	to	the	sphere.	As	Re	increases,	the	fluid	elements
near	the	sphere	slow	down	so	much	as	to	become	at	rest	or	even	invert	their
velocity.	Immediately	after	the	sphere,	the	fluid	ascends,	relative	to	the	main
flow,	separates	from	it	and,	reached	a	certain	distance,	turns	back	in	the	forward
direction.	Eddies,	or	vortices,	start	to	form	around	Re	=	25,	causing	the
separation	of	the	streamlines	of	the	main	flow.

Figure	1.32c	shows	the	flow	pattern	between	Re	≈	10	and	Re	≈	150.	The
velocity	of	our	example	ball	in	the	air	is	between	1.5	and	20	cm/s.	Two	quite
regular	vortices	are	present,	which	remain	stably	attached	to	the	rear	surface	of
the	sphere	(if	the	sphere	moves,	the	vortices	move	with	it),	up	to	Re	≈	100.	The
streamlines	outside	the	boundary	layer	go	around	the	vortex	region	and	join	back
together	further	downstream.	The	point	of	flow	separation	is	close	to	the	rear	of
the	sphere.	Notwithstanding	the	vortices,	as	these	are	stationary,	the	flow	is	still
laminar.

As	Re	further	increases,	the	vortices	become	unstable	and	begin	to	oscillate.
The	point	of	separation	moves	to	the	side	of	the	sphere.	For	100	<	Re	<	150,	the
vortices	stay	close	to	the	sphere,	but	for	Re	>	150,	they	detach,	alternatively	on
one	side	and	then	the	other,	and	move	downstream.	A	vortex	trail	is	formed,
which	extends	considerably	far	downstream,	symmetrically	populated	of	eddies,
which	decay	as	another	form.	This	is	called	a	Kármán	vortex	street	after
Theodore	von	Kármán	(1881–1963).	Figure	1.32d	shows	a	typical	pattern	for	Re
between	150	and	a	few	thousand.	The	flow	in	the	wake	is	no	longer	stationary
and	becomes	turbulent.	However,	outside	the	trail,	upstream	and	downstream	of
the	sphere,	the	flow	is	laminar	and	stationary,	namely	the	streamline	pattern	does
not	vary	in	time.

Figure	1.31	shows	that	the	drag	coefficient	is	roughly	constant,	at	a	value	of
about	0.5,	in	this	range	of	Reynolds	numbers	and	up	to	Re	=	2	×	105
(corresponding	to	7.5	m/s	for	our	example	ball).	This	means	that	the	drag	is
roughly	proportional	to	the	velocity	squared.	We	talk	of	wake	drag	.	The
turbulent	wake	forbids	the	main	current	streamlines	from	joining	back	together
at	the	rear	of	the	sphere.	The	detachment	point	is	near	the	diameter	at	90°.	The
pressure	forces	are	completely	unbalanced.	In	the	forward	region,	the	streamline
pattern	is	similar	to	the	one	for	the	inviscous	fluid,	with	the	corresponding
pressure	forces	on	the	sphere.	At	the	rear	part,	contrastingly,	the	streamlines
practically	do	not	touch	the	surface.	The	pressure	force	in	the	downstream	region



is	close	to	zero.
The	situation	changes	once	more	when	Re	reaches	values	of	a	few	thousand

(Fig.	1.32e).	The	boundary	layer	is	still	laminar.	The	entire	wake	is	filled	with
turbulent	eddies.	The	larger	vortices	contain	smaller	vortices	and	these,	in	turn,
contain	even	smaller	ones.	The	drag	coefficient	remains	substantially	constant	at
about	0.5.	The	drag	force	is	proportional	to	the	square	velocity.	Recall	that	in	the
D’Alambert	paradox,	the	pressure	at	the	front	stagnation	point	is	 .	It	can	be

shown	that	the	pressure	at	the	front	is,	in	any	case,	proportional	to	 .	The

pressure	force	is	then	proportional	to	 ,	where	A	is	the	cross-section	of	the
sphere.	In	conclusion,	the	pressure-dominated	drag	can	be	expressed	as

	 (1.59)
At	very	high	Reynolds	numbers,	around	Re	=	300,000,	the	drag	coefficient

suddenly	drops,	as	shown	in	Fig.	1.31.	Figure	1.32f	shows	the	new	flow	pattern;
the	wake	appears	contracted	compared	to	Fig.	1.32e.	The	consequence	is	a
decrease	in	the	wake	cross-section	and,	see	Eq.	(1.59),	a	decrease	in	the	pressure
drag.	The	reason	for	the	phenomenon,	sometimes	called	the	drag	crisis	and
discovered	by	L.	Ludwig	Prandtl	(1875–1953)	in	1914,	is	as	follows.	At	the
values	of	Reynolds	number	we	are	considering,	turbulence	starts	to	develop	in
the	boundary	layer.	This	turbulence	extends	somewhat	at	the	rear	part	of	the
boundary	layer.	The	flow	turbulent	separation	takes	place	downstream	on	the
rear	of	the	surface	of	the	sphere	at	a	position	of	120°–130°	from	the	front
stagnation	point.

This	interpretation	has	been	checked	with	a	vertical	cylinder,	for	which	the
situation	is	very	similar	to	the	sphere,	by	placing	two	thin	sheets	on	the
generators	in	the	plane	normal	to	the	motion,	forcing	the	streamline	to	detach
from	them	and,	consequently,	the	section	of	the	wake	to	be	independent	of	the
Reynolds	number.	Under	these	conditions,	the	drop	of	the	drag	coefficient	is	not
observed.

In	the	discussion	of	this	section,	we	have	assumed	the	surface	of	the	sphere
(or,	more	generally,	of	any	object	moving	in	a	fluid)	to	be	perfectly	smooth.
Indeed,	the	roughness	and	the	structure	of	the	surface	at	the	sub-millimetric	scale
have	strong	effects	on	the	boundary	layer,	and	consequently	on	the	drag.	We
have	already	seen	similar	effects	for	the	flow	in	a	pipe,	in	Sect.	1.12.	As	a	matter
of	fact,	a	surface	looking	smooth	to	the	naked	eye	might	reveal	consequential
roughness	at	the	microscopic	level.

Golf	balls	are	a	good	example	of	(visible)	roughness.	Their	surfaces	are



covered	with	small	dimples.	A	ball	hit	by	a	skilled	golfer	can	leave	the	tee	at	a
typical	speed	of	υ	≅	80	m/s.	The	corresponding	Reynolds	number	(D	=	41.1	mm
in	the	UK,	42.7	mm	in	the	USA)	is	Re	=	2.2	×	105,	which	is	below,	but	not	too
far	from,	the	drag	crisis	for	a	sphere	of	smooth	surface.	The	dimples	help	to
trigger	the	transition	from	a	laminar	to	a	turbulent	boundary	layer,	bringing	it
down	to	Re	≈	6–8	×	104,	well	within	the	range	of	a	good	golfer.	The	resulting
drag	reduction	doubles	the	distance	flown	by	the	ball	over	what	can	be	achieved
with	a	smooth	ball.	Another	example	is	the	skin	of	fast-swimming	sharks.	It
exhibits	riblet	structures	aligned	in	the	direction	of	flow	that	are	able	to	reduce
skin	friction	drag	in	the	turbulent-flow	regime	by	up	to	10	%.	Certain	types	of
Olympic	swimsuits	are	made	of	a	material	that	mimics	shark	skin.	The	opposite
effect	has	been	measured	with	tennis	balls.	No	drag	crisis	is	observed	in
experiments	in	wind	tunnels.	This	is	due	to	the	fuzz	elements	that	cover	their
surfaces.	If	the	ball	is	shaved,	taking	away	the	fuzz,	the	drag	crisis	appears.
These	examples	show	how	the	drag,	for	a	given	Reynolds	number,	can	be	very
different	for	different	types	of	surface.	Indeed,	the	roughness	and	the	structure	of
the	surface	at	the	sub-millimetric	scale	have	strong	effects	on	the	boundary	layer,
and	consequently	on	the	drag.

Notice	also	that,	especially	at	high	Reynolds	numbers,	the	drag	force
strongly	depends	on	the	shape	of	the	body,	especially	its	rear	part.	The	narrower
the	wake	is,	the	smaller	the	drag.	One	then	searches	for	aerodynamic	profiles,	to
minimize	the	drag.	Typically,	as	shown	in	Fig.	1.33,	the	forward	part	should	be
rounded,	while	the	rear	is	smoothly	tapered.	The	streamlines	then	follow	the
shape	of	the	body	without	strong	variations	of	their	density	and	direction.	In	this
way,	the	pressure	drop	at	the	back	part	is	strongly	reduced.	The	production	of
vortices	is	also	reduced.	The	detachment	of	the	streamline,	which	is	at	the	origin
of	vortex	formation,	takes	place	only	in	the	neighboring	parts	of	the	tail	of	the
body	and	the	section	of	the	wake	is	strongly	reduced.

Fig.	1.33 Aerodynamic	profile

We	notice,	in	conclusion,	that	even	when	we	have	talked	of	high	velocities,
we	have	always	meant	them	to	be	small	compared	to	the	speed	of	sound,	in	order
that	it	might	be	possible	to	consider	the	fluid,	even	if	it	is	a	gas,	to	be
incompressible.



1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

Problems

We	want	to	weigh	10	g	of	water	with	a	precision	balance	with	an	error
smaller	than	1	mg.	Do	we	need	to	correct	for	the	buoyancy?

	
Two	iron	spheres	of	different	dimensions	are	simultaneously	dropped	into
the	sea	from	the	surface.	Which	one	reaches	the	bottom	first?

	
Consider	the	force	due	to	the	atmospheric	pressure	on	the	plane	of	a	table	of
1	m2	area.	We	lay	on	the	table	a	weight	equal	to	that	force.	How	much	is	its
mass	(in	order	of	magnitude)?

	
A	composite	pendulum	is	made	of	a	metal	bar	pivoted	about	an	axis	outside
the	center	of	mass.	We	know	its	mass	m,	its	moment	of	inertia	I	and	its
period	T.	If	we	sink	it	completely	in	water,	how	does	the	period	vary?

	
A	wooden	ball	floats	on	the	surface	of	a	body	of	water.	If	we	sink	it	to	a
depth	equal	to	its	radius	and	we	abandon	it,	it	will	oscillate	up	and	down.
Are	the	oscillations	harmonic?

	
In	a	Pitot	tube	immersed	in	a	flow	of	density	 ,	we

measure	the	pressure	difference	 .	Find	the	fluid	velocity.

	
A	thin	tube	folded	as	in	Fig.	1.34	is	immersed	in	a	water	current,	with	its
opening	on	the	side	of	the	flow.	The	water	rises	in	the	vertical	part	of
h	=	150	mm.	Find	the	velocity	of	the	current.



1.8.

1.9.

1.10.

Fig.	1.34 The	device	of	problem	1.7

	
A	container	is	full	of	water	to	the	height	h	=	50	cm.	The	water	viscosity	is	

.	A	horizontal	tube	is	connected	to	the	lateral	wall	of	the
tank	at	the	height	of	its	base.	The	tube	has	a	radius	r	=	1	mm	and	length
l	=	1	m.	A	tap	at	the	beginning	of	the	tube	is	initially	closed.	Then,	the	tap	is
opened	and	the	water	starts	flowing.	Assuming	the	pressure	at	the
beginning	of	the	tube	to	be	equal	to	that	at	the	bottom	of	the	tank,	determine
if	the	initial	flow	(before	the	level	in	the	tank	is	diminished	appreciably)	is
laminar	or	turbulent	and	then	determine	the	volumetric	flow	rate.

	
An	air	current,	above	a	hot	ground	area,	flows	vertically	up	with	velocity	υ
a		=	0.2	m/s.	The	airflow	transports	powder	particles,	which	we	consider	to
be	spherical	with	radius	r.	The	particle	upwards	velocity	is	constant	and
smaller	than	that	of	the	air,	υ	p		=	4	cm/s.	The	density	of	the	air	is	

	and	that	of	the	particles	 .	The	air	viscosity

is	 .	(a)	Assuming	the	flow	to	be	laminar,	calculate	the
radius	of	the	particles.	(b)	Verify	if	the	assumption	is	correct.

	
The	initial	velocity	of	a	tennis	ball	hit	by	a	champion	is	υ	=	60	m/s,	its
diameter	being	D	=	6.5	cm;	the	velocity	of	a	football/soccer	ball	after	the
kick	of	a	top	player	is	υ	=	30	m/s,	its	diameter	being	D	=	22	cm.	How
much	are	the	Reynolds	numbers?
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Thermodynamics	developed	historically	after	mechanics,	mainly	in	the	XIX
century.	Development	was	motivated	by	two	main	needs,	both	outside	of	pure
physics.	The	first	motivation	was	the	search	to	understand	how	the	leaving
creature	“produces”	energy;	the	second	was	the	desire	to	develop	engines
capable	of	transforming	heat,	generated,	for	example,	by	the	burning	of	coal,	to
produce	mechanical	work	which	otherwise	had	to	be	done	by	humans	or
animals.	However,	thermodynamics	is	not	important	for	engineering	and	biology
alone,	but	represents	one	of	the	fundamental	chapters	in	physics.

In	the	first	volume	of	this	course,	dealing	with	mechanics,	we	saw	that,	for
an	isolated	system,	the	total	energy,	or,	more	precisely,	the	total	mechanical
energy,	namely	the	sum	of	potential	and	kinetic	energy,	is	conserved,	i.e.,
remains	constant,	only	if	all	acting	forces	are	conservative.	If	dissipative	forces
are	present,	the	energy	appears	not	to	have	been	conserved.	However,	this	non-
conservation	is	only	apparent	due	to	the	fact	that	other	forms	of	energy	exist
beyond	the	mechanical	energy	that	we	did	not	include	in	the	balance.
Thermodynamics	shows	us	that	all	physical	bodies	contain	energy,	called
internal	or	thermal	energy,	which	does	not	depend	on	their	velocity	(like	kinetic
energy)	or	position	(like	potential	energy)	but	on	other	variables,	like
temperature	and	pressure,	which	are	called	thermodynamic	coordinates.	Thermal
energy	can	be	exchanged	between	systems	in	two	ways:	one	is	work,	which	we
already	know,	and	the	other	is	heat,	which	we	shall	learn	about	in	this	Chapter.
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Figure	2.1	shows	the	life	spans	of	the	major	contributors	to	thermodynamics,
starting	with	the	theory	of	gases.

Fig.	2.1 Life	spans	of	the	fathers	of	thermodynamics

In	1824,	the	French	engineer	N.L.	Sadi	Carnot	published	the	brief	but
fundamental	article	“Reflections	on	the	motive	force	of	heat”,	in	which	he	made
completely	clear	the	limits	within	which	heat	can	be	transformed	into	work,	or,
more	precisely,	the	limit	on	the	efficiency	of	any	heat	engine.	Carnot	developed
his	theory,	which	became	the	second	law	of	thermodynamics,	when	heat	was	still
believed	to	be	a	fluid,	called	“caloric”.	Notwithstanding	that,	his	arguments	are
completely	correct.	Forty	years	after	his	death	in	1832	from	the	plague,	his	notes
were	published.	Reading	these	notes,	one	can	understand	how	the	young	genius
had	already	understood	the	equivalence	of	heat	and	work.

Twenty-one	years	after	Carnot’s	article,	in	1845,	R.J.	Mayer	published	the
paper	in	which	he	fully	established	the	equivalence	between	heat	and	work.	This
is	the	first	law	of	thermodynamics,	which	is	the	law	of	energy	conservation.	In
the	very	same	year,	J.P.	Joule	published	his	simple	and	ingenious	experiment,
which	we	shall	discuss	in	Sect.	2.7.

Thermodynamics	is	closely	linked	to	mechanics.	Indeed,	all	thermodynamic
phenomena	can	be	interpreted	through	statistical	mechanics,	as	we	shall	see	in
Chaps.	5	and	6.	All	bodies	are	made	of	molecules,	which	are	matter	particles
whose	motion	follows	the	laws	of	mechanics.	However,	the	number	of
molecules	is	so	huge	that	it	is	practically	impossible	to	describe	the	motion	of
each	of	them	in	detail.	But	even	if	it	were	possible,	such	a	description	would	be
useless.	As	we	have	seen	in	the	previous	chapter,	several	of	the	motions	of	fluids
have	already	proven	incapable	of	being	analytically	treated	with	mechanics



equations.	Similarly,	statistical	mechanics	considers	suitable	mean	values	of	the
kinematic	quantities	(velocity,	kinetic	energy,	etc.)	Historically,	the	development
of	statistical	mechanics	is	mainly	due	to	Maxwell	and	Boltzmann	in	the	second
part	of	the	XIX	century.

It	is	important	to	realize	that	thermodynamic	and	statistical	mechanics	points
of	view	are	different	and	complementary.	The	fundamental	laws	of
thermodynamics	are	established	by	inference	starting	from	the	experiments.
They	are	then	assumed	to	be	axioms;	their	consequences	are	logically	deduced
and	experimentally	controlled.	The	method	is	powerful	because	it	allows	for
obtaining	very	precise	results,	while	statistical	mechanics	is	sometimes	forced	to
introduce	simplifying	assumptions	in	order	to	be	able	to	proceed.	In	addition,
thermodynamic	laws	are	general.	They	also	hold	for	systems	not	composed	of
molecules,	like	electromagnetic	radiation	in	a	metal	box.	As	a	matter	of	fact,	the
discovery	of	quantum	mechanics	by	Planck	happened	during	the	study	of	the
thermodynamics	of	the	electromagnetic	field.	On	the	other	hand,	statistical
mechanics	unifies	thermodynamics	and	mechanics	by	showing	which
elementary	mechanical	processes	are	at	the	basis	of	heat	exchanges	and,	more
generally,	of	all	thermodynamic	processes.

In	this	chapter,	we	shall	start	by	introducing	the	concept	of	the
thermodynamic	system	and	the	main	thermodynamic	variables,	or	coordinates,
the	pressure,	the	temperature	and	the	volume.	We	shall	define	the
thermodynamic	state	and	discuss	the	different	types	of	processes	from	one	state
to	another	and	the	equations	that	govern	them.	We	shall	then	discuss	the
experiments	and	arguments	that	led	to	the	establishment	of	the	first	law	of
thermodynamics	and	discuss	its	consequences.

2.1	 The	Thermodynamic	State
Consider	a	certain	amount	of	gas	contained	in	a	box.	The	constituent	particles,
i.e.,	the	molecules,	are	free	to	move	about	inside	the	box	and	may	have	any
velocity.	There	are	no	constraints,	as	there	are	for	rigid	bodies,	limiting	the
degrees	of	freedom	of	the	system.	If	we	then	want	to	know	the	mechanical	state
of	the	system,	we	need	to	know	6	N	parameters,	the	three	coordinates	and	the
three	components	of	the	velocity	of	each	molecule.	The	number	N	of	molecules
being	huge,	this	is	impossible	in	practice.

In	thermodynamics,	the	concept	of	the	state	of	a	system	is	different	from	that
of	the	same	system	in	mechanics.	The	thermodynamic	state	is	defined	by	a	small
number	of	variables	,	which	are	different	from	the	mechanical	ones.	We	shall
start	with	a	few	cases.



Homogeneous	fluid	of	only	one	chemical	species	at	rest	contained	in	a	box.
Think,	for	example,	of	a	bottle	of	nitrogen	under	pressure,	of	a	balloon	full

of	helium,	of	a	pot	of	water,	etc.	The	quantities	that	we	can	easily	measure	are:
the	mass	of	the	fluid	m,	its	volume	V,	its	pressure	p	and	its	temperature	θ.	We
have	considered	the	volume	to	be	small	enough	so	that	the	pressure	and
temperature	may	be	the	same	at	all	points	of	the	system.	If	the	system	were,	for
example,	the	earth’s	atmosphere,	this	would	not	be	true.	We	have	already	defined
the	pressure;	we	shall	subsequently	define	the	temperature	in	the	next	section.
For	the	moment,	just	consider	what	you	would	measure	with	a	common
thermometer.

We	might	think	that	the	volume	would	not	be	enough	to	characterize	the
geometrical	properties	of	the	system.	We	might	also	think	that	we	need	to	know
its	shape.	The	container	of	the	water	might	be,	for	example,	spherical	or	cubic,
or	taller	than	it	is	wide,	etc.	Why	did	we	not	include,	for	example,	the	area	of	the
surface	amongst	the	variables?	Only	the	experiment	can	give	the	answer.	As	a
matter	of	fact,	we	have	experimentally	found	that	the	largest	fraction	of	the
thermodynamic	properties	of	a	fluid	is	independent	of	its	shape.	However,	when
the	surface	to	volume	ratio	is	large,	as	in	fog	droplets	or	soap	bubbles,	the
surface	must	also	be	considered.	We	shall	do	that	in	Chap.	4.

Homogeneous	solid	body	of	only	one	chemical	species.
In	this,	case	we	must	consider,	beyond	the	variables	considered	for	a	fluid,

the	shear	stresses,	and	the	pressures	and	tensions	that	can	be	present	in	the	bulk
of	the	body.	Think,	for	example,	of	a	metal	parallelepiped	subject	to	external
tension	along	one	axis	and	pressure	on	the	perpendicular	faces.	Such	situations
quickly	become	complicated,	and	we	shall	not	discuss	them.

Rubber	band	.
The	thermodynamic	variables	are	the	length	and	the	temperature	of	the	band.
System	composed	of	one	chemical	species	in	different	states	(or	aggregation

phases).
Consider,	for	example,	a	system	composed	of	liquid	water	and	ice	in	a

container	at	°C,	or	an	alcohol	and	its	vapor.	To	specify	the	thermodynamic	state,
we	now	need,	beyond	the	already	mentioned	variables,	the	fraction	of	ice	and
water,	or	of	alcohol	liquid	and	vapor,	etc.,	for	each	of	the	phases.	This	variable	is
called	concentration	.

System	composed	of	more	than	one	chemical	species	.
The	thermodynamic	state	is	defined	by	the	variables:	total	mass,	volume,

pressure,	temperature	and	concentrations	of	the	different	chemical	species.
More	complex	to	describe	is	the	non-homogeneous	system,	in	which	some	of

the	variables,	for	example,	the	temperature	or	the	pressure,	vary	from	point	to



(a)

point.	To	study	them,	one	must	divide	the	system	into	parts	that	are	small	enough
to	be	able	to	be	considered	homogeneous.	We	shall	not	deal	with	any	of	these
problems.

We	shall	always	assume,	as	we	have	already	implicitly	done,	that	all	of	the
system’s	parts	are	at	rest,	or	moving	so	slowly	that	their	kinetic	energies	can	be
neglected.	Notice	that	the	thermodynamic	state	of	a	system	does	not	change	if	it
moves	all	together.	For	example,	the	thermodynamic	state	of	a	pot	of	water	at	a
certain	temperature	is	the	same	whether	it	is	on	the	ground	or	on	a	train	moving
at	300	km/h.

From	what	we	have	established,	it	is	clear	that	knowledge	of	the
thermodynamic	state	of	a	system	gives	very	little	to	no	information	on	the
mechanical	state	of	its	molecules.	Consider	a	gas	contained	in	a	box.	The	mass,
volume,	pressure	and	temperature	are	constant;	its	thermodynamic	state	does	not
vary.	But	its	molecules	move	continuously,	and	their	coordinates	and	velocities
change.	The	mechanical	state	varies,	while	the	thermodynamic	one	is	constant.

Particularly	important	amongst	the	thermodynamic	states	are	the	states	of
thermodynamic	equilibrium	.	These	are	the	states	that	remain	unaltered	as	long
as	the	external	conditions	do	not	change.	A	state	is	of	thermodynamic
equilibrium	when	the	following	conditions	are	satisfied:

mechanical	equilibrium	.

	
If,	as	is	usually	the	case,	pressure	is	one	of	the	thermodynamic	variables,	it

must	be	equal	in	all	the	parts	of	the	system.	Otherwise,	movements	would
happen	inside	the	system.	Consider,	for	example,	a	gas	inside	a	cylinder	closed
by	a	piston	of	surface	S,	which	is	movable	without	friction,	as	in	Fig.	2.2.	If	p	is
the	pressure	of	the	gas,	the	force	exerted	by	the	gas	on	the	piston	is	pS,	directed
vertically	up.	Let	us	call	the	external	force	on	the	piston	directed	down	F	a	.	This
is	the	resultant	of	the	force	due	to	the	atmospheric	pressure,	the	weight	of	the
piston	and,	possibly,	of	another	weight	that	we	laid	on	the	piston.	The
mechanical	equilibrium	is	reached	when	the	gas	pressure	force	is	equal	to	F	a	.	If
there	is	no	weight	on	the	piston	and	the	weight	of	the	piston	itself	is	negligible,
the	internal	pressure	is	equal	to	the	external	pressure	at	mechanical	equilibrium.
If	the	gas	is	enclosed	in	a	rigid	bottle,	its	pressure	can	be	completely	different
from	that	which	is	external.



(b)

Fig.	2.2 A	gas	in	a	cylinder	closed	by	a	movable	piston

Going	back	to	Fig.	2.2,	suppose	now	that	there	is	friction	between	the	piston
and	the	cylinder,	as	is	always	the	case	in	practice.	In	this	case,	the	mechanical
equilibrium	can	exist,	even	if	the	pressure	of	the	gas	is	larger	or	smaller	than	that
which	is	external,	as	long	as	the	force	resulting	from	the	pressure	difference	is
smaller	than	the	maximum	static	friction	force.

As	a	second	example,	consider	a	rubber	band	fixed	at	one	extreme	and
hanging	vertically	down,	as	in	Fig.	2.3.	If	we	apply	a	force	F	a	to	the	other
extreme,	the	rubber	band	will	stretch	up	to	the	deformation	at	which	the	elastic
force	T	is	equal	to	F	a	.

Fig.	2.3 Rubber	band	in	equilibrium

thermal	equilibrium	.

	
The	first	necessary	condition	is	that	all	the	parts	of	the	system	have	the	same

temperature.	Otherwise,	temperatures	tend	to	become	equal	and	we	do	not	have
equilibrium.	The	second	condition	is	that	temperature	should	not	vary	due	to	the



(c)

external	environment.	Suppose	that,	as	is	usually	the	case,	the	environment	has	a
definite	constant	temperature.	Clearly,	if	the	temperatures	of	the	system	and	the
environment	are	equal,	the	system	is	in	thermal	equilibrium.	However,	this	is	not
a	necessary	condition.	If	the	walls	surrounding	the	system	are	thermally
insulating,	the	temperature	of	the	system	does	not	vary	even	if	different	from
that	which	is	external.	Walls	having	this	property	are	said	to	be	adiabatic	,	from
the	Greek	words	a	(not),	dia	(through)	and	bainein	(to	go).	Even	if	perfectly
adiabatic	conditions	cannot	be	realized	in	practice,	for	example	polystyrenes
boxes	or	dewars	make	for	good	approximations.

chemical	equilibrium	.

	
If	there	are	more	chemical	species	with	thermodynamic	equilibrium,	the

concentrations	of	the	different	species	must	be	constant	in	time.	The	same	is	true
if	there	is	only	one	species,	in	different	phases	(liquid	and	solid,	liquid	and
vapor,	etc.)

2.2	 Temperature
The	concept	of	temperature	is	linked	in	the	common	sense	of	the	world	to	the
feeling	of	hot	or	cold.	In	physics,	the	concept	must	be	precisely	defined.	We
shall	define	temperature	operationally,	namely	as	the	set	of	operations	needed	to
measure	it.	We	state	immediately	that	we	shall	proceed	by	approximations,
gradually	increasing	the	precision	of	the	definition.	The	reason	for	this	is	that	the
most	precise	definitions	of	temperature	require	thermodynamic	concepts,	which,
in	turn,	require	some	knowledge	of	temperature.	There	is	no	risk	of	circular
arguments,	as	we	shall	always	rely	on	experiments.

Our	simpler	definition	stems	from	the	following	considerations.	We	start
from	our	own	perception	of	“temperature”	as	a	state	in	which	an	object	is
perceived	as	being	either	colder	or	hotter.	We	take	two	bodies	of	different
temperature	and	put	them	in	contact.	We	feel	both	temperatures	and	determine
that	they	vary	with	time	but,	after	a	while,	both	become	stationary.	We	conclude
that	the	two	bodies	are	in	thermal	equilibrium.	Can	we	state	that	they	have	the
same	temperature?	Not	yet.	We	must	pay	attention	to	the	fact	that	equality
enjoys	the	transitive	property;	if	A	is	equal	to	B	and	B	is	equal	to	C,	then	A
should	be	equal	to	C.	We	need	to	check	if	the	property	is	satisfied	through
experiment;	we	cannot	state	it	through	logic.	Experimentally,	we	find	that,	if



body	A	is	in	thermal	equilibrium	with	body	B	and,	separately,	body	B	is	in
equilibrium	with	body	C,	then,	if	we	put	A	and	C	in	contact,	their	temperatures
do	not	vary;	they	are	in	thermal	equilibrium	as	well.

We	can	now	define	temperature	as	follows.	We	take	two	bodies,	one,	say	A,
is	the	thermometer,	the	other,	B,	is	the	body	the	temperature	of	which	we	want	to
measure.	We	put	them	in	contact	and	wait	for	thermal	equilibrium.	If	we	now
have	a	third	body,	C,	which	is	in	thermal	equilibrium	with	B,	the	transitory
property	we	have	found	insures	that	the	thermometer	A	will	measure	the	same
temperature	when	put	in	contact	with	C	as	it	did	with	B.

The	traditional	thermometers	consist	of	a	glass	bulb	containing	a	liquid
connected	to	a	capillary	tube	several	centimeters	long.	When	in	contact	with	a
warmer	body,	the	liquid	expands;	the	higher	the	temperature,	the	higher	it	rises
in	the	capillary.	Mercury	was	in	standard	use	as	thermometer	liquid	until	the
1990s,	when	it	was	judged	to	be	too	risky	to	handle,	being	poisonous	and	thus
potentially	dangerous	in	cases	of	the	glass	accidentally	breaking.	Mercury	was
subsequently	replaced	as	a	thermometric	liquid	by	colored	alcohols.	These
thermometers,	in	turn,	were	soon	replaced	by	so-called	electronic	thermometers.
We	shall	come	back	to	their	working	principles	at	the	end	of	the	section,	and
base	our	discussion	on	liquid-in-glass	thermometers,	which	are	conceptually
simpler.

For	quantitative	measurement,	we	need	a	scale.	To	have	a	scale,	we	must	fix
two	values,	the	zero	and	the	step	or	degree	of	the	scale,	namely	the	unit.	For	that,
we	need	two	systems	having	a	well-defined	temperature.	We	observe	that	a
mixture	of	pure	water	and	ice	always	has	the	same	temperature	provided	it	is	at
the	same	pressure.	We	can	check	with	our	thermometer,	even	if	we	still	lack	a
scale,	by	observing	that	it	always	sets	at	the	same	level	when	in	contact	with	the
mixture.	The	same	is	true	for	a	mixture	of	water	and	its	vapor	in	equilibrium	at
the	same	pressure.	On	the	Celsius	scale	,	zero	(0	°C)	is	defined	as	the	water-ice
equilibrium	temperature	at	the	standard	atmospheric	pressure.	It	is	named	after
Anders	Celsius	(Sweden,	1701–1744).	The	standard	atmospheric	pressure	is
defined	as	p	=	1.013	×	105	Pa.	A	temperature	of	one	hundred	degrees	(100	°C)	is
defined	as	the	water-vapor	equilibrium	temperature	at	the	standard	atmospheric
pressure.

We	can	proceed	as	follows.	We	emerge	our	thermometer	in	the	ice-water
mixture	at	atmospheric	pressure	and	mark	a	line	on	the	capillary	at	the	level	of
the	thermometer	liquid,	writing	a	0	on	the	tube.	We	do	the	same	with	the	water-
vapor	mixture,	and	mark	100.	We	still	need	the	degree.	The	best	we	can	do	is	to
divide	the	length	between	the	two	marks	into	one	hundred	equal	parts.	We	can
continue	with	the	same	step	above	100	and	below	0.



Pay	attention,	however.	In	dividing	the	length	into	equal	parts,	we	have
implicitly	assumed	that	the	length	of	the	liquid	in	the	capillary	does	vary	linearly
with	temperature.	Is	that	true?	One	way	to	check	is	to	build,	following	the	above
procedure,	a	number	of	thermometers,	say	several	made	of	different	glasses,
with	different	diameters,	containing	different	liquids,	etc.	Then,	we	measure	the
temperature,	which	should	be	different	from	0	and	100,	of	a	reference	body	with
all	of	them.	We	find	that	the	readings	of	the	thermometers	are	equal	only	upon
first	approximation.	We	can	find	differences	of	a	few	tenths	of	a	degree	between
thermometers	with	the	same	liquid	and	up	to	a	few	degrees	if	the	liquid	is
different.	As	a	matter	of	fact,	the	thermal	dilatation	of	the	bodies	is	not	exactly	a
linear	function	of	temperature.	In	addition,	the	temperature	reading	depends	on
the	glass	as	well	and,	even	if	only	weakly,	on	the	age	of	the	glass.

In	conclusion,	the	liquid-based	thermometers	are	very	simple,	cheap	and
easy	to	use.	They	are	particularly	useful	for	somewhat	imprecise	measurements.
However,	in	physics,	temperature	is	a	very	important	quantity,	and	must	be
defined	as	accurately	as	possible	(as	usual,	infinite	accuracy	does	not	exist).	The
method	is	the	ideal	gas	thermometer	.

We	preliminarily	observe	that	the	gas	thermometer	measures	the	absolute
temperature	.	As	a	matter	of	fact,	the	Celsius	scale	(and	the	Fahrenheit	scale	as
well)	is	arbitrary;	it	is	not	based	on	a	physical	law.	However,	a	temperature	exists
that	must	necessarily	be	considered	to	be	zero	on	a	physical	basis.	This	is	called
absolute	zero	.	The	most	direct	experimental	evidence	comes	from	the	laws
experimentally	established	by	Alessandro	Volta	(Italy,	1745–1827),	Joseph	Louis
Gay-Lussac	(France,	1778–1850)	and	others.	These	heuristic	laws	were	later
included	in	the	gas	law	that	we	shall	discuss	in	the	next	section.	We	anticipate
here	that	these	authors	found	both	the	pressure	of	a	gas	at	constant	volume	and
its	volume	at	constant	pressure	to	be	linear	functions	of	the	temperature,	which
was	measured	on	the	Celsius	scale.	An	important	observation	was	that	both	the
pressure	and	the	volume	tend	towards	zero	when	the	temperature	tends	towards
the	same	well-defined	value,	which	is	−273.15	°C.	The	same	laws	predict	both
pressure	and	volume	to	be	negative	below	that	temperature.	This	fact	being
meaningless,	the	temperature	of	−273.15	°C	is	the	absolute	zero.	It	is	physically
impossible	to	reach	temperatures	lower	than	that.	The	zero	of	the	absolute
temperature	scale	is	the	absolute	zero.

We	now	need	the	unit	of	temperature,	which	is	called	the	kelvin	1	(K),	after
Lord	William	Thomson	,	Baron	of	Kelvin	(UK,	1824–1907).	The	definition	of
kelvin	is,	as	for	the	other	units,	the	responsibility	of	the	Bureau	International	des
Poids	et	Mesures	(BIPM,	for	short).	The	BIPM	has	changed	the	definition	over
time	to	make	it	as	precise	as	possible,	taking	advantage	of	technological



progress.	The	kelvin	is	defined	by	establishing	the	temperature	of	a	fixed	point.
A	mixture	of	the	three	phases	of	a	substance,	water	in	particular,	is	in
equilibrium	at	a	certain	temperature	and	a	certain	pressure	only.	This	is	called
the	triple	point	.	The	water	triple	point	temperature	(water,	ice	and	vapor	in
equilibrium)	is	by	definition	273.16	K.	The	number	has	been	chosen	to	have	one
kelvin	be	almost	equal	to	the	pre-existing	one	degree	Celsius.

As	we	have	already	stated,	the	gas	thermometer	is	a	precision	instrument.	As
such,	it	is	not	of	simple	use.	Accurate	procedures	are	required	to	reduce
systematic	errors	as	much	as	possible.	We	shall	not	enter	into	such	issues,	being
interested	here	in	the	operation	principles.

The	thermometer,	schematically	shown	in	Fig.	2.4,	consists	of	a	bulb	(made
of	quartz	or	metal)	containing	a	gas,	which	is	connected	through	thin	tubing	to	a
mercury	manometer,	so	as	to	measure	the	gas	pressure.	All	the	pressure
measurements	are	done	at	constant	volume.	We	have	also	prepared	the	water,
ice,	and	vapor	mixture	in	equilibrium	at	the	triple	point.	We	are	going	to	measure
the	temperature	of	a	reference	system,	say	a	mixture	of	water	and	vapor	in
equilibrium	at	atmospheric	pressure.

Fig.	2.4 The	gas	thermometer

We	put	into	the	bulb	a	certain	quantity,	say	m	1,	of	a	gas,	say	nitrogen.	We
then	put	the	bulb	in	contact	with	the	triple	point	bath.	The	auxiliary	container	R,
which	is	connected	to	the	manometer	by	a	flexible	rubber	tube,	is	used,	lifting	or
lowering	it	according	to	need,	to	ensure	that	the	level	of	the	mercury	in	the
branch	of	the	manometer	on	the	side	of	the	gas	is	always	at	the	same	level,	for



every	measurement.	The	position	is	marked	by	the	index	I.	In	such	a	way,	we
guarantee	that	the	volume	of	the	gas	will	always	be	the	same.	The	measurement
of	the	height	h	gives	the	difference	between	atmospheric	and	gas	pressures,	and
the	latter	when	the	atmospheric	pressure	is	known.	Let	us	call	it	p	tr	.	It	is
convenient	to	choose	a	mass	m	1	small	enough	to	have	a	rather	low	p	tr	compared
to	the	atmospheric	pressure.

We	now	put	the	bulb	in	contact	with	the	water	vapor	mixture.	We	measure
the	pressure	as	before	and	we	call	it	p.	We	now	preliminarily	define	the
temperature	of	the	mixture,	assuming	it	to	be	proportional	to	the	pressure,
namely	as

	 (2.1)
where	we	anticipated	in	the	notation	that	the	so-defined	temperature	might
depend	on	the	pressure	p.

The	definition	can	be	accepted	only	if	we	find	the	same	result	using	another
gas.	In	practice,	this	is	not	so.	We	perform	three	measurements	with	bulbs	full
of,	respectively,	nitrogen,	oxygen	and	helium.	We	regulate	the	quantities	of	the
different	gases	to	obtain	the	same	pressure	at	the	triple	point.	It	is	equal	to
80	kPa	in	this	case.	We	find	that	the	three	pressures	measured	with	the	bulb	in
contact	with	the	water-vapor	mixture	are	a	bit	different.	Consequently,	the
temperatures	given	by	Eq.	(2.1)	are	also	a	bit	different.	They	are	shown	in
Fig.	2.5	at	the	abscissa	of	80	kPa.	The	differences	are	of	a	few	tenths	of	a	degree.
They	are	small,	but	nonetheless	tell	us	that	the	definition	Eq.	(2.1)	is	not
sufficiently	accurate.

Fig.	2.5 Temperature,	as	defined	by	Eq.	(2.1)	measured	with	different	gases	and	different	pressures



We	proceed,	introducing	into	the	bulb	smaller	quantities	of	the	gases.	The
pressure	measured	at	the	triple	point	is	now	p	tr		=	40	kPa	for	all	the	gases.	We
repeat	the	operations	and	find	the	three	temperatures	in	Fig.	2.5	at	the	abscissa	of
40	kPa.	The	values	are	now	closer	to	one	another.	We	perform	a	third	set	of
measurements,	again	halving	the	pressures	to	p	tr		=	20	kPa.	We	find	that	the
measured	temperatures	get	still	closer.	But	Fig.	2.4	shows	us	more.	If	we	linearly
extrapolate	the	measurement	made	with	each	gas	to	zero	p	tr	,	all	of	them	lead	to
the	same	value!	The	extrapolated	value	does	not	depend	on	the	gas	we	use.	The
behavior	of	the	gases	tends	to	be	the	same	at	zero	pressure.	The	gas	having	this
limit	behavior	is	called	an	ideal	gas	.

In	conclusion,	we	define	ideal	gas	temperature	,	which	is	also	the	absolute
temperature,	as

	 (2.2)
In	practice,	the	procedure	just	discussed	is	very	delicate	and	requires	weeks

of	work.	The	measurements	are	done	in	metrological	laboratories	.	The
temperatures	of	the	triple	points	and,	at	a	definite	pressure,	the	fusion	and
boiling	points	of	a	number	of	pure	substances	are	accurately	measured.	These
points	are	then	employed	to	calibrate	secondary	thermometers	that	are	simpler	to
use.

The	gas	thermometer	does	not	allow	for	measuring	very	low	temperatures,
because	all	gasses	liquefy	at	low	enough	temperatures.	The	lowest	liquefaction
temperature	is	for	He,	at	4	K	at	atmospheric	pressure.	In	practice,	the	lowest
measurable	temperature	with	the	gas	thermometer	is	about	1	K.	Below	that,	the
ideal	gas	temperature	is	not	defined.	We	shall	see	in	Sect.	3.5	how	a	temperature
scale	based	on	thermodynamic	arguments	can	be	defined.	This	is	called
thermodynamic	temperature	and	is	meaningful	at	all	temperatures.	In	the	interval
of	definition	of	both,	the	two	scales	coincide.

Many	types	of	thermometers	are	commercially	available.	They	are	based	on
a	number	of	temperature-dependent	physical	processes,	work	in	a	certain
temperature	range,	and	have	different	accuracies,	depending	on	the	use	for	which
they	are	meant	(medical,	room,	laboratory,	etc.).	Here,	we	recall	only	the	already
mentioned	and	very	common	electronic	thermometers	,	also	called	digital
because	they	display	the	temperature	on	a	digital	screen.	The	majority	of	them
are	based	on	the	thermoelectric	effect	;	the	electric	resistance	of	some	metal
varies	almost	linearly	with	temperature.	The	resistance	of	the	metal	sensor	is
measured	by	means	of	an	electronic	circuit	and	displayed.	The	thermometers	are
calibrated	by	the	production	company.	The	accuracy	is	typically	a	few	tenths	of	a



degree	(±0.1°–0.2°	for	medical	models).	Better	accuracy	can	be	obtained	with
thermistors,	which	employ	the	temperature	dependence	of	the	electric	resistance
of	semiconductors.

We	add	a	final	consideration.	In	any	temperature	measurement,	whatever	the
thermometer	may	be,	the	temperature	of	the	thermometer	is	what	is	measured.
Consequently,	we	must	always	ascertain	that	the	thermometer	is	in	thermal
equilibrium	with	the	object	whose	temperature	we	are	measuring.	In	practice,	the
thermal	contact	between	the	two	must	be	good,	and	one	must	wait	for	the
equilibrium	to	be	reached.	In	this	process,	there	is	always	some	heat	transfer
from	body	to	thermometer,	or	vice	versa.	As	a	consequence,	both	temperatures
vary.	However,	if	the	mass	(or,	even	better,	the	heat	capacity,	which	we	shall
define)	of	the	thermometer	is	much	smaller	than	that	of	the	body,	the
temperature	change	of	the	latter	is	negligible.

Lastly,	we	notice	that	the	water-ice	equilibrium	temperature	at	normal
atmospheric	pressure,	namely	0	°C,	is	equal	to	273.15	K.

2.3	 State	Equation
Consider	a	homogeneous	fluid	made	of	a	single	substance.	As	we	said,	the
thermodynamic	coordinates	of	the	system	are	the	occupied	volume	V,	the
pressure	p	and	the	absolute	temperature	T,	which	we	take	in	the	kelvin	scale.	In
order	for	the	coordinates	to	have	definite	values,	the	system	must	be	in
thermodynamic	equilibrium	.

In	our	study,	we	shall	consider	only	closed	systems	.	Consequently,	in	its
processes,	the	mass	of	the	fluid	does	not	vary.	The	state	variables	are	then	three:
p,	V	and	T.	A	system	described	by	these	variables	is	called	a	hydrostatic	system	.
It	is	experimentally	found	that	the	three	variables	are	not	independent;	only	two
of	them	are	as	such.	For	example,	if	a	gas	is	enclosed	in	a	given	volume	and	we
exert	a	certain	pressure,	then	it	assumes	a	well-defined	temperature.	Similarly,	if
we	take	a	defined	volume	of	a	gas	at	a	certain	temperature,	its	pressure	assumes
a	definite	value.	The	relationship	amongst	the	three	values	is	called	a	state
equation	and	can	be	expressed	as

	 (2.3)
Every	hydrostatic	system	is	characterized	by	its	own	state	equation.	No	real

system	has	a	state	equation	that	can	be	expressed	analytically.	It	is,	however,
always	possible,	and	extremely	useful,	to	determine	the	equation	experimentally.
To	do	that,	we	put	the	system	in	a	sufficiently	large	number	of	different	states
and	measure	the	thermodynamic	coordinates	in	each	of	them.	We	have	limited



our	considerations	to	hydrostatic	systems	for	simplicity.	Notice,	however,	that	all
the	thermodynamic	systems	are	ruled	by	a	state	equation	that	connects	its	state
variables.	We	shall	see	an	example	at	the	end	of	the	section.

As	a	consequence,	two	thermodynamic	variables	are	sufficient	to	define	any
equilibrium	state	of	a	hydrostatic	system	of	given	mass.	The	most	often	used	pair
is	volume	and	pressure.	The	equilibrium	states	are	represented	as	points	on	the	p,
V	Cartesian	plane,	with	V	as	abscissa	and	p	as	ordinate.	Clearly,	only	the	positive
part	of	the	V	axis	is	meaningful.	The	pressure	is	almost	always	positive	too,	but
it	may	exceptionally	be	negative.

Several	scientists	in	the	XVII	and	XVIII	centuries	were	responsible	for
developing	the	physics	of	gases	and,	in	particular,	their	thermodynamics.	We
have	graphically	represented	the	life	spans	of	the	main	contributors	in	Fig.	2.1.
They	are:	Edme	Mariotte	(France,	1620–1684),	Robert	Boyle	(UK,	1627–1691),
Alessando	Volta	(Italy,	1745–1827),	John	Dalton	(UK,	1766–1844),	Amedeo
Avogadro	(Italy,	1776–1856)	and	Joseph	Louis	Gay-Lussac	(France,	1778–
1850).

The	results	of	their	work	can	be	summarized	as	follows.	If	we	change	the
volume	of	a	gas,	keeping	its	temperature	fixed,	the	pressure	varies	in	almost
inverse	proportion	to	the	volume.	In	other	words,	the	product	of	pressure	and
volume	remains	nearly	constant	at	constant	temperature.	If	the	temperature
varies,	the	product	of	pressure	and	volume	vary	proportionally	to	it,	provided	it
is	the	absolute	temperature.	The	proportionality	constant	is,	in	turn,	proportional
to	the	mass	of	the	gas.	The	state	equation	of	the	gas	we	are	considering	is	thus

where	r	is	the	proportionality	constant,	which	is	different	for	different	gases.
The	equation	is	very	simple	and,	as	we	shall	now	see,	contains	a	lot	of
information.	But	there	is	more	to	it.

A	quantity	of	a	well-defined	substance	can	be	measured	in	two	units:	the
kilogram,	which	measures	its	mass,	and	the	mole	,	which	measures	its	number	of
molecules,	which	are	of	one	species	only	because	the	substance	is	defined.	The
symbol	of	the	mole	is	mol	.	A	mole	of	a	substance	is	an	Avogadro	number	of
molecules	of	that	substance.	When	the	mole	was	defined,	and	originally	called	a
gram	molecule,	the	unit	of	mass	was	the	gram.	The	molecular	masses	were
defined	in	grams	as	well.	A	mole	is	the	number	of	grams	of	the	considered
substance	that	contains	an	Avogadro	number	of	molecules.	For	example,	a	mole
of	hydrogen	has	a	mass	of	one	gram.	The	Avogadro	number	is	one	of	the
fundamental	constants	of	physics.	Its	first	digits	should	be	remembered	by	heart.
It	is	very	large,	namely



	 (2.4)
Coming	back	to	the	gas	equation,	let	us	express	the	quantity	of	gas	in

number	of	moles,	 ,	where	M	is	the	molar	mass	of	the	substance
and	the	10−3	factor	is	due	to	the	fact	that	m	is	in	kilograms.	The	state	equation
becomes

	 (2.5)
where	R	is	a	new	constant	(R	=	rm/n).	Up	to	now,	we	have	simply	re-defined
the	proportionality	constant.	However,	what	matters	is	that	experiments	show
that	R	is	a	universal	constant,	namely	that	it	is	the	same	for	all	gases.	This	is
called	the	gas	constant	.	Its	value	is

	 (2.6)
Rigorously	spiking,	no	gas	follows	Eq.	(2.5)	exactly.	However,	the	most

common	gases,	such	as	the	gases	in	the	atmosphere,	behave	approximately
according	to	that	equation	in	a	large	interval	of	pressures	and	temperatures.	The
approximation	is	better	the	higher	the	temperature	and	the	lower	the	pressure.
The	ideal	gas	is	defined	as	a	gas	that	rigorously	obeys	Eq.	(2.5).	This	is	called
the	ideal	gas	equation	,	but	also	the	Boyle	law	and	Boyle-Mariotte	law	.	We	can
see	now	that	the	definition	of	absolute	temperature	given	in	the	preceding
section	was	based	on	this	law.

A	fundamental	implication	of	the	gas	law	was	established	in	1811	by
Amedeo	Avogadro	.	The	Avogadro	law	states	that	equal	volumes	of	different
(ideal)	gases	with	the	same	conditions	of	temperature	and	pressure	contain	the
same	number	of	molecules.	Today,	we	see	that	this	is	an	immediate	consequence
of	the	universality	of	the	R	constant.	A	useful	quantity	is	the	molar	volume	,
which	is	the	volume	occupied	by	a	mole	of	(ideal)	gas	at,	as	it	is	called,	STP	,
meaning	standard	temperature	and	pressure	.	These	are	defined	as	T	=	273	K
(about	0	°C)	and	p	=	105	Pa	(about	one	atmosphere).	The	molar	volume	of	ideal
gases	is

	 (2.7)
The	gas	equation	Eq.	(2.5)	contains	several	heuristic	laws	that	were

discovered	by	different	researchers,	as	mentioned	in	the	previous	section.	Very
importantly,	it	contains	the	law	discovered	in	1801	by	John	Dalton	,	called	the
Dalton	law	after	him	,	and	also	the	law	of	partial	pressures	.	The	law	states	that:
“In	a	mixture	of	different	gases	the	partial	pressure	of	each	of	them	is	the
pressure	it	would	exert	if	it	occupied	all	the	volume	alone.”	It	is	as	if	each	gas
was	kept	unto	itself	without	any	interaction	with	the	other	ones.	The	Dalton	law



is	rigorously	valid	for	the	ideal	gases.
We	close	this	section	considering	an	example	of	a	non-hydrostatic

thermodynamical	system;	the	rubber	band	represented	in	Fig.	2.3.	The
thermodynamical	variables	are	the	length	l	and	the	tension	τ,	which	depends	at
equilibrium	on	the	applied	force	F	a	,	and	the	temperature	T.	The	elastic	constant
of	rubber	depends	on	the	temperature,	increasing	as	the	temperature	increases.
The	rubber	becomes	“harder”	if	heated.	In	other	words,	for	a	fixed	length,	the
tension	depends	on	temperature.	We	can	also	find	that	stretching	the	band	causes
its	temperature	to	increase,	while	relaxing	the	band	causes	it	to	diminish.	Even	in
this	case,	there	is	a	state	equation,	linking	the	three	thermodynamical	variables.
Only	two	of	them	are	independent.	However,	this	equation	of	state	cannot	be
expressed	analytically.

2.4	 Processes
A	thermodynamic	process	,	or	thermodynamic	transformation	(the	two	terms	are
synonyms),	happens	when	a	thermodynamic	system	changes	from	an	initial	to	a
final	state.	Generally	speaking,	each	of	them	can	be	an	equilibrium	state	or	not.
However,	we	shall	only	consider	the	former	case.	The	states	of	the	system	during
transformation	can	never	be	rigorously	of	equilibrium,	because	an	equilibrium
state	is	stationary.	We	shall	now	define	different	types	of	processes.

Quasi-static	processes	.	A	process	is	said	to	be	quasi-static	if	the	states	taken
by	the	system	differ	from	stationary	states	by	infinitesimal	quantities.	In	practice,
the	coordinates	of	the	system	should	vary	very	slowly,	allowing	it	the	time	to
adjust	to	the	changed	conditions	before	the	coordinates	change	again.	The	initial
and	final	states	of	a	quasi-static	process	are	necessarily	equilibrium	states.

Consider,	for	example,	a	gas	in	a	cylinder	closed	by	a	piston.	If	we	want	to
increase	its	pressure	in	a	quasi-static	manner,	we	must	move	the	piston	slowly.
At	each	small	displacement	of	the	piston,	the	pressure	of	the	gas	increases	in	a
layer	immediately	under	the	piston.	The	other	parts	of	the	gas	still	have	the
initial	pressure.	Soon,	the	pressure	increase	propagates	gradually	throughout	the
volume.	The	piston	must	move	slowly	enough	to	allow	the	pressure	throughout
the	gas	volume	to	reach	(close	to)	the	same	value.	If	we	lay	a	heavy	weight	on
the	piston	and	abandon	it,	the	piston	will	move	down	quickly	and	the	process
will	not	be	quasi	static.	Contrastingly,	if	we	gradually	pour	some	sand	on	the
piston,	the	process	will	be	quasi-static.

Reversible	processes	.	A	process	is	reversible	if	it	is	quasi-static	and	if
dissipative	forces	are	negligible.	Consider	a	generic	state	P	in	a	certain	instant	of



a	quasi-static	process.	P	is	almost	an	equilibrium	state.	Immediately	before	that
instant,	an	infinitesimal	variation	of	the	external	conditions,	the	system	was	in	a
state	infinitely	near	to	P.	If	the	process	is	reversible,	when	we	invert	the
infinitesimal	variation	of	the	external	conditions	with	the	system	in	P,	the	system
goes	back	to	the	state	it	was	in	immediately	before	P.

Let	us	again	consider	the	gas	contained	in	a	cylinder,	as	in	Fig.	2.6.	Suppose
friction	to	be	present	between	the	piston	and	the	cylinder.	The	force	F	a	is
applied	externally	to	the	piston,	normally	downward.	To	have	a	quasi-static
expansion	process,	we	slowly	decrease	the	applied	force.	Assume	a	friction	force
F	r	to	be	present.	Its	direction	is	opposite	to	that	of	the	motion.	The	gas	exerts	a
force	pS	on	the	piston	directed	vertically	upward.	To	have	the	piston	moving	up,
it	should	be	 ,	as	in	Fig.	2.6a.	If	we	want	the	motion	to	be	slow,	the
inequality	should	be	just	satisfied.

Fig.	2.6 Forces	on	the	piston.	a	Expansion,	with	friction,	b	compression,	with	friction,	c	reversible,	no
friction

The	process	is	quasi-static	but	not	reversible.	Indeed,	if	we	want	to	invert	the
process,	namely	to	compress	the	gas	and	have	the	piston	moving	down,	we	must
increase	F	a	,	but	not	only	by	an	infinitesimal	quantity.	This	is	because	the
friction	force,	which	always	opposes	the	motion,	changes	signs	and	is	finite,	not
infinitesimal.	The	condition	becomes	 ,	as	in	Fig.	2.6b.

We	see	that,	in	order	to	pass	from	expansion	to	compression,	changing	the
external	conditions	by	an	infinitesimal	quantity	(the	force	F	a	in	the	example),
the	friction	must	be	zero,	as	in	Fig.	2.6c.

Rigorously	speaking,	quasi-static	processes	do	not	exist,	and	even	less	so	the
reversible	ones.	However,	we	can	often	operate	in	conditions	that	are	close
enough.



Irreversible	processes	.	All	the	processes	that	are	not	reversible	(all	the
natural	ones),	namely	when	dissipative	effects	are	present,	or	the	system	goes
through	states	that	do	not	only	differ	by	infinitesimals	from	equilibrium	states
(or	both),	are	irreversible.

Cyclic	processes	.	A	process	is	cyclic	if	initial	and	final	states	coincide.
Clearly,	a	reversible	process	can	be	quasi-static,	reversible	or	irreversible.

We	now	define	the	adiabatic	wall	.	Consider	two	systems	A	and	B	at
different	temperatures,	T	A	and	T	B	,	respectively.	If	we	put	them	in	contact,	both
temperatures	vary	until	they	become	equal.	We	make	a	series	of	experiments
with	plates	of	different	materials	introduced	between	the	two	systems,	as	shown
in	Fig.	2.7.	We	find	that	the	time	necessary	to	reach	thermal	equilibrium,	starting
from	the	same	temperatures,	are	different	for	different	materials.	If	the	plate	is
metallic	and	thin,	the	time	is	very	short;	if	it	is	foamed	polystyrene	and	thick,	the
time	is	very	long.	Other	materials	give	intermediate	results.	The	materials	of	the
first	type	are	called	good	thermal	conductors	,	those	of	the	second,	good	thermal
insulators	.

Fig.	2.7 Thermodynamic	systems	at	different	temperatures	separated	by	(a)	diathermic	wall,	(b)	adiabatic
wall

Two	idealized	cases	are	considered.	We	call	walls	perfectly	permeable	to
heat	diathermic	walls	and	walls	that	completely	block	the	heat	transfer	adiabatic
walls.	When	two	systems	are	separated	by	a	diathermic	wall,	the	temperature
equilibrium	is	reached	exactly	as	if	the	wall	was	not	present;	if	the	wall	is
adiabatic,	each	system	keeps	its	temperature	indefinitely.

Figure	2.8	represents	two	thermodynamic	systems	closed	in	a	single
container.	The	walls	of	the	container	are	adiabatic;	the	two	systems	can	interact
with	one	another,	but	not	with	the	environment.



Fig.	2.8 A	gas	in	an	adiabatic	and	rigid	box.	a	All	the	gas	on	the	left-hand	side,	tap	closed,	b	gas	in	all	the
box,	tap	open

A	system	is	closed	if	it	does	not	exchange	matter	with	the	surrounding
environment.	A	pot	of	water	boiling	on	the	fire	is	not	a	closed	system	(even	with
a	cover),	because	vapor	exits;	water	in	a	pressure	cooker,	before	it	whistles,	is	a
closed	system.

A	thermodynamic	system	is	isolated	if	it	can	exchange	neither	mass	nor
energy	with	the	environment.	A	necessary	condition	is	for	it	to	be	completely
enclosed	in	adiabatic	walls.	The	condition	forbids	energy	exchanges	as	heat	(see
discussion	in	the	following	section),	but	not	as	work.	Consequently,	the
condition	is	not	sufficient.

An	isolated	system	in	an	equilibrium	state	remains	indefinitely	in	that	state.
To	move	it	out	of	that	state,	it	is	necessary	to	add	energy	to	it	or	subtract	energy
from	it,	which	is	not	possible	by	definition.	If,	contrastingly,	the	system	is
initially	in	a	non-equilibrium	state,	it	spontaneously	performs	a	process	that
brings	it	to	an	equilibrium	state.	The	processes	of	this	type	are	called
spontaneous	processes	.	Consider,	for	example,	the	two	parts	of	a	system,
isolated	from	the	external	environment,	in	thermal	contact	at	different
temperatures	in	Fig.	2.7a.	They	are	not	in	an	equilibrium	state.	The	system
spontaneously	evolves	towards	the	equilibrium	state	in	which	the	temperatures
are	equal.

Consider	a	container	with	adiabatic	and	rigid	walls.	A	diaphragm	with	a	tap
divides	the	container	into	two	halves.	The	half	on	the	left-hand	side	contains	a
gas;	the	half	on	the	right-hand	side	is	empty.	This	is	an	equilibrium	state,	but
ceases	to	be	one	when	we	open	the	tap.	The	system	then	spontaneously	evolves
until	the	point	when	the	gas	occupies	the	entire	volume	with	uniform	pressure.
The	system	is	now	in	equilibrium	and	its	state	no	longer	changes.

Obviously,	all	spontaneous	processes	are	irreversible.
As	we	already	mentioned	in	the	previous	section,	we	can	represent	any

equilibrium	state	of	a	hydrostatic	system	with	a	point	on	a	Vp	plane.	In	Fig.	2.9,
points	A	and	B	represent	equilibrium	states.	The	non-equilibrium	states	cannot



be	represented	by	points,	because	at	least	some	of	their	thermodynamic
coordinates	are	not	defined.	In	this	case,	only	V	is	defined,	because	the	system	is
in	a	rigid	container,	while	the	pressure	and	the	temperature	are	not	defined.	A
quasi-static	process	is	represented	on	the	Vp	plane	by	a	curve;	the	points	of	the
curve	are	the	equilibrium	states	crossed	by	the	system.	The	curve	Γ	in	the	figure
is	an	example	of	a	quasi-static	process	from	A	to	B.	If	the	process	is	not	quasi-
static,	even	if	it	joins	two	equilibrium	states,	it	cannot	be	represented	by	a	curve.
In	Fig.	2.9,	we	have	schematically	drafted	such	a	process	with	a	grey	area,	to
indicate	the	lack	of	definition	of	the	intermediate	states.

Fig.	2.9 	A	and	B	are	equilibrium	states	of	a	hydrostatic	system.	Of	the	two	processes,	Γ	is	reversible,	the
grey	area	is	not

2.5	 Work
Any	hydrostatic	system	has	a	definite	volume	bounded	by	surfaces	that	may	be
the	surrounding	walls	of	a	container,	the	free	surface	of	a	liquid,	etc.	The	system
can	interact	with	the	surrounding	environment	by	exchanging	energy	through	its
surfaces.	External	forces	may	be	present	and	exert	work,	as	defined	in
mechanics,	on	the	system.	The	following	convection	is	adopted	in
thermodynamics:	work	is	positive	if	exerted	on	the	system,	negative	if	exerted
by	the	system.	The	underlying	reason	for	this	is	the	fact	that	thermodynamics
began	historically	as	the	science	of	engines.

The	forces	with	which	the	system	exchanges	work	with	the	surroundings	act
on	its	surfaces.	They	can	do	work	only	if	their	application	points	move,	meaning
that	at	least	part	of	the	surface	must	move.	Movement	of	the	surface	is,	however,
not	sufficient.	To	have	work,	the	volume	of	the	system	must	also	change,	as	we
shall	now	see.

Consider	the	simple	system	of	Fig.	2.10,	which	is	a	gas	contained	in	a
cylinder	with	mobile	piston	of	area	S.	Let	p	be	the	pressure	and	F	a	the	external



force,	perpendicular	to	the	piston.	Suppose	that	the	friction	between	piston	and
cylinder	is	negligible.	Consider	a	reversible	expansion.	The	piston	moves	very
slowly.	The	forces	on	the	piston	are	F	a	and	the	pressure	of	the	gas	Sp.	The	latter
is	larger	than	the	former	by	a	mere	infinitesimal	quantity.	The	work	done	by	the
pressure	forces	of	the	gas	for	an	elementary	displacement	dx	of	the	piston	is

	 (2.8)
where,	at	the	last	member,	we	have	taken	into	account	that	S	dx	is	the	volume
variation	dV.	The	work	of	the	external	force	F	a	is

	 (2.9)

Fig.	2.10 Forces	acting	on	the	piston,	in	absence	of	friction

Notice	that	in	both	expressions,	we	have	used	the	symbol	δW	rather	than	dW,
because	these	are	infinitesimal	quantities	but	are	not,	in	general,	the	differentials
of	any	function,	namely	they	are	not	exact	differentials	.

The	two	works	we	have	expressed	are	equal	in	magnitude,	because	the	two
forces	are	equal.	Notice,	however,	that	if	the	friction	is	not	negligible,	and	the
process	is	quasi-static	but	not	reversible,	the	two	works	are	different.	In	this
case,	the	work	of	the	pressure	force	is	larger,	because	it	acts	against	the	sum	of	F
a	and	the	friction	force	(see	Fig.	2.6).	If	the	process	is	not	even	quasi-static,	the
gas	goes	through	non-equilibrium	states,	in	which	the	pressure	is	not	even
defined.	Equation	(2.8)	loses	its	meaning.	However,	we	can	calculate	the
external	work	made	by	the	gas	on	the	surroundings	even	if	the	process	is
irreversible.	Indeed,	the	motion	of	the	piston	very	often	takes	place	to	produce	a
useful	work	(raising	a	weight,	rotating	the	axis	of	an	engine,	etc.).	In	all	these
cases,	an	external	force,	F	a	,	acts	against	the	motion	and	we	can	use	Eq.	(2.9)	to



calculate	the	work	done.	If	friction	is	present,	the	work	against	the	friction	force
must	be	added.

Within	the	mentioned	limitations,	the	expression	of	the	elementary	work	of
the	pressure	force	for	a	variation	of	the	volume	can	be	generalized	to	surfaces	of
any	shape.	Consider	a	hydrostatic	system	with	pressure	p	enclosed	in	a	surface	Σ
of	arbitrary	shape	(see	Fig.	2.11).	Consider	an	infinitesimal	quasi-static	process
in	which	the	surface	changes	to	Σ	1.	The	process	being	quasi-static,	the	pressure
remains	definite	and	independent	of	the	position.	Let	dΣ	be	an	infinitesimal
surface	element	and	dn	the	magnitude	of	its	displacement,	measured	normally	to
the	surface.	The	pressure	force	of	the	gas	on	the	surface	element	is	p	dΣ.	Its
work	is	p	dΣ	dn.	We	obtain	the	total	work	by	integration	on	the	surface.	p	being
constant,	we	have	 .	As	we	see	in	the	figure,	the	quantity	
is	the	volume	variation	dV,	and	we	thus	get

	 (2.10)

Fig.	2.11 Infinitesimal	expansion	of	a	hydrostatic	system

The	work	done	by	the	gas	in	a	quasi-static	process	Γ,	from	state	A	to	B,	is
obtained	by	integration

	 (2.11)

In	general,	the	work	depends	not	only	on	the	initial	and	final	states,	but	also
on	the	particular	process	joining	them.

Consider	the	quasi-static	process	Γ	of	a	hydrostatic	system	from	the	initial
state	A	to	the	final	state	B.	In	the	plane	Vp,	the	process	is	represented	by	an
oriented	curve,	which	we	also	call	Γ,	as	in	Fig.	2.12.	In	the	process,	the	system
goes	through	states	having	definite	values	of	pressure	and	volume.	We	can	then
consider	the	pressure	to	be	a	certain	function	p(V)	of	the	corresponding	volume.
The	curve	in	the	Vp	plane	represents	this	function.	The	work	in	the	process	is



	 (2.12)

where	V	A	and	V	B	are	the	volumes	of	the	initial	and	final	states.	Graphically,
the	work	is	the	area	under	the	curve,	which	is	grey	in	the	figure.	The	work	is
positive	if	the	final	volume	is	larger	than	the	initial	one,	and	negative	in	the
opposite	case.	We	easily	understand	how,	if	the	process	between	the	same	states
is	changed,	the	work	changes	too,	in	general.	The	work	for	a	different	process,	as
with	Γ	1	in	the	figure,	is	the	area	under	this	curve,	which	is	different	from	the
area	under	Γ.

Fig.	2.12 Two	quasi-static	processes	between	the	same	initial	and	final	states

Up	to	now,	we	have	implicitly	assumed	the	process	to	be	such	that	the
system	has	a	certain	state	only	once.	Only	in	this	case,	the	function	p(V)	is
single-valued.	If	this	is	not	the	case,	it	is	always	possible	to	divide	the	process
into	parts,	for	which	p	is	the	single	valued	function	of	V.	Let	us	look	at	an
important	example.

In	a	cyclic	process	,	the	system	starts	from	a	state,	goes	through	the	process
and	then	returns	to	its	initial	state.	A	cyclic	quasi-static	process	of	a	hydrostatic
system	is	represented	by	a	closed	curve	in	the	pV	plane.	Figure	2.13	shows	such
a	process	starting	from	the	initial	state	I	and	eventually	coming	back	to	it.



Fig.	2.13 Cyclic	quasi-static	process	of	a	hydrostatic	system

The	work	generated	by	the	system	in	the	cycle	is,	geometrically,	the	area
enclosed	within	the	cycle	taken	with	the	positive	sign	if	the	direction	is
clockwise,	and	negative	if	it	is	anti-clockwise.	Let	A	and	B	be	the	states	of
minimum	and	maximum	volume	reached	through	the	process,	respectively.	Let	Γ
1	be	the	section	of	the	process	from	A	to	B	and	Γ	2	the	section	from	B	to	A.	The
work	done	in	section	Γ	1	is	the	area	under	this	curve	and	is	positive.	The	work
done	in	section	Γ	2	is	the	area	under	it	and	is	negative.	The	total	work	is	the
difference	between	the	two	areas,	corresponding	to	what	we	have	stated.	It	is
immediately	understood	that	the	work	would	have	been	negative	if	the	sense	was
anti-clockwise.	Notice	that	work	is	a	definite	quantity	when	the	cycle	is	given;	it
does	not	depend	on	the	initial	and	final	state	I.

Isochoric	process	.	A	process	is	said	to	be	isochoric	if	the	corresponding
external	work	is	zero.	When	the	work	can	be	expressed	by	Eq.	(2.10),	we	must
have	dV	=	0	for	all	the	elements	of	the	process,	namely	the	isochoric	processes
must	take	place	at	constant	volume.	As	a	matter	of	fact,	that	is	the	meaning	of
the	name	(in	Greek,	iso	means	equal,	and	choros	means	space).	However,	the
definition	is	more	general.	A	process	may	also	be	isochoric	when	Eq.	(2.10)	does
not	hold.

Isobaric	process.	This	is	a	process	at	a	constant	pressure.
Let	us	calculate	the	work	of	a	hydrostatic	system	in	an	isobaric	process.	This

is	immediate.	The	pressure	being	constant,	we	can	take	it	out	of	the	integral	and
write

	 (2.13)

Isothermal	process	.	This	is	a	process	at	a	constant	temperature.
The	isothermal	curves	for	a	gas	in	the	Vp	plane	are	hyperbolas	having

asymptotes	on	the	axes.	Let	us	calculate	the	work	of	n	moles	of	an	ideal	gas	in
an	isothermal	process	from	A	=	(p	A	,	V	A	,	T)	to	B	=	(p	B	,	V	B	,	T),	represented	in
Fig.	2.14.	Using	the	gas	state	equation	Eq.	(2.5),	we	have



Fig.	2.14 Isothermal	process	in	a	gas

The	last	member	looks	strange,	because	the	arguments	of	the	mathematical
functions	should	always	be	dimensionless.	But	it	is	just	a	matter	of	writing	it.
Indeed,	the	difference	between	two	logarithms	is	the	logarithm	of	the	ratio	of
their	arguments.	It	is	better	for	us	to	write	the	expression	in	the	form

	 (2.14)

2.6	 Heat
We	have	mentioned	several	times	that	if	two	systems	at	different	temperatures
are	brought	into	thermal	contact,	their	temperatures	will	vary	until	they	become
equal.	In	this	type	of	process,	the	two	systems	exchange	energy.	The	form	of
exchange	is	not	work,	because	nothing	is	moved	mechanically;	rather,	the	form
of	exchange	is	heat	.	Heat	is	an	energy	exchange	between	two	systems	at
different	temperatures,	as	we	shall	now	discuss.

We	warn	the	reader	that	the	common	linguistic	use	of	the	word	“heat”	might
generate	confusion	in	this	case.	Indeed,	the	common	language	often	uses	the
words	“heat”	and	“temperature”	interchangeably.	In	physics,	however,	they	have
very	different	meanings.	We	have	already	discussed	temperature;	we	shall	now
discuss	heat.

The	physical	dimensions	of	heat	are	the	same	as	those	of	energy.	However,
heat	is	NOT	energy.	Similar	to	work,	heat	is	an	ENERGY	EXCHANGE.	Heat,
as	work,	cannot	be	“owned”	by	a	system.	If	one	moves	a	book	that	is	on	the
floor	up	onto	a	shelf,	one	does	work	on	the	book.	Nobody	would	think	that	the
book	now	“has”	that	work.	It	has	potential	energy,	relative	to	the	floor,	which	is
equal	to	that	work.	In	the	common	language,	we	say	that	friction	“produces”
heat.	For	example,	brakes	become	hot	when	they	act.	But	no	heat	has	been
produced.	Even	more	to	the	point,	no	heat	has	been	exchanged.	Instead,	the



friction	forces	have	done	work,	the	kinetic	energy	of	the	car	has	decreased	and
the	temperature	of	the	brakes	has	increased.	As	we	shall	see,	the	temperature
increase	corresponds	to	an	increase	in	the	internal	energy	of	the	brakes.

Another	example	of	confusion	is	sentences	like:	“I	have	been	in	Texas	and
the	heat	was	unbearable”.	What	was	unbearable	was	the	temperature,	not	the
heat.	The	very	word	“hot”	tends	to	induce	confusion,	as	it	comes	from	heat.
However,	a	body	is	hot	not	when	it	“has”	a	lot	of	heat,	but	when	its	temperature
is	high.	In	physics,	we	repeat,	heat	is	always	an	exchange.	To	talk	of	heat,	at
least	two	systems	must	be	present,	not	only	one.

Let	us	now	precisely	define	heat.	We	will	give	an	operational	definition,
namely	we	define	the	set	of	operations	needed	to	measure	heat.	The	instruments
used	to	measure	heat	are	calorimeters	.	By	definition,	heat	is	the	physical
quantity	measured	with	a	calorimeter.	We	must	thus	define	the	calorimeter.

In	thermodynamics,	by	convention,	heat	is	positive	if	absorbed,	negative	if
released	by	the	system.	The	reader	will	note	that	the	conventions	on	the	sign	for
heat	and	work	are	opposite.	This	is	a	consequence	of	the	fact	that
thermodynamics	was	developed	to	build	engines	able	to	absorb	heat	and	produce
work.

The	calorimeter	is	itself	a	thermodynamic	system.	It	is	made	of	a	substance,
called	the	calorimetric	substance	,	sealed	inside	a	container.	The	substance	is
often	pure	water	or	ice	or	a	mixture	of	the	two.	The	masses	of	the	substance	are
known,	having	been	measured.	To	measure	a	heat	exchange,	we	need	a	second
system,	a	body	that	gives	out	or	absorbs	the	heat	to	be	measured.	The	exchange
must	take	place	with	the	calorimeter	alone.	Consequently,	the	calorimeter	and
the	body	must	be	enclosed	in	an	adiabatic	container,	to	forbid,	as	much	as
possible,	any	heat	exchange	with	the	surroundings.

We	know	that	heat	exchanges	produce	temperature	changes.	The	simplest,
preliminary	choice	is	assuming	the	temperature	change	to	be	proportional	to	the
heat	exchange,	at	least	for	variations	of	the	former	that	are	not	too	large.	We
must	then	guarantee	that	no	other	thermodynamic	variable	actually	varies	but
temperature.	First,	we	shall	work	at	constant	volume.	Consequently,	we	shall	use
a	liquid	or	a	solid	as	the	calorimetric	substance,	whose	volume	does	not	vary
much	with	temperature,	and	we	shall	avoid	gases.	Second,	we	shall	work	at
constant	pressure.	Third,	we	shall	avoid	chemical	reactions,	by	using	pure
substances.

Let	us	now	build	our	calorimeter.	As	an	adiabatic	container,	we	shall	use	a
vacuum	flask,	technically	known	as	a	Dewar	flask	.	This	type	of	vessel,	called	a
thermos,	greatly	lengthens	the	time	over	which	its	contents	remain	hotter	or
cooler	than	its	surroundings.	The	technique	was	invented	by	James	Dewar	(UK,



1842–1923)	in	1892.	It	consists	of	two	flasks,	one	inside	the	other,	joined	at	the
neck.	The	walls	of	the	flasks	are	made	of	thin	glass	and	are	aluminized	like
mirrors.	The	gap	between	the	flasks	is	evacuated.	In	this	way,	the	different
modes	of	heat	transmission,	convection,	conduction	and	radiation	(which	we
shall	study	in	Chap.	6)	are	strongly	reduced.	The	flask	has	an	opening	that	can
be	closed	with	an	insulating	plug.

We	introduce	a	certain	quantity	of	pure	water	into	the	flask,	of	which	we
have	measured	the	mass,	m,	and	the	temperature,	T	i	.	The	system	that	exchanges
heat	with	the	calorimeter	can	be,	for	example,	a	piece	of	metal	that	we	heat	at	a
temperature	higher	than	T	i	.	We	introduce	the	body	into	the	calorimeter	and
close	the	plug.	In	the	calorimeter,	we	also	have	a	thermometer.	We	see	the
measured	temperature	increasing	and	finally	becoming	constant	at	a	certain
value	T	f	.	The	heat	given	out	by	the	body	and	the	heat	absorbed	by	the	water	are
equal	because	the	system	is	isolated.	We	can	say	that	this	heat	Q	absorbed	by	the
water	is	proportional	to	T	f		−	T	i	.

As	one	can	imagine,	the	temperature	rise	T	f		−	T	i	depends,	for	the	same
absorbed	heat,	on	the	mass	of	water.	We	find	experimentally	that	the	product	of
the	water	mass	and	the	temperature	difference	m(T	f		−	T	i	)	is	proportional	to	the
absorbed	heat.	We	finally	state	that

	 (2.15)
The	proportionality	constant	c	depends	on	the	substance.	If	we	had	used,	for

example,	an	oil	or	an	alcohol	in	place	of	water,	we	would	have	found	different
values.	The	constant	is	called	the	specific	heat	of	the	substance.	The
measurement	unit	for	heat,	which	is	the	kilocalorie	,	is	defined	by	fixing	the
specific	heat	of	the	water,	to	be	exact,	at	a	certain	temperature.

The	definition	is	as	follows:	The	kilocalorie	is	the	heat	quantity	that	must	be
given	to	a	kilogram	of	water	in	order	to	increase	its	temperature	from	14.5	to
15.5	°C,	at	the	constant	pressure	of	one	atmosphere.

The	temperature	of	the	exchange	must	be	specified	because	the	specific	heat
varies,	even	if	not	by	much,	with	the	temperature.

We	note	here	that	the	calorimetric	measurements	are	always	very	delicate.
For	example,	the	thermal	insulation,	even	if	good,	is	never	perfect,	and
corrections	must	be	applied	to	the	measurements	to	take	into	account	heat	leaks.
What	is	interesting	here	is	the	principle	of	operation	of	the	calorimeter.

We	finally	note	that,	heat	being	the	physical	dimension	of	energy,	its	unit	in
the	SI	is	the	joule	.	We	need	the	provisional	calorimetric	unit	of	the	kilocalorie,
for	the	following	discussion.



2.7	 Equivalence	of	Heat	and	Work
The	equivalence	between	heat	and	work	was	established	for	the	first	time	by
Julius	Robert	von	Mayer	(Germany,	1814–1878)	in	a	paper	published	in	1845.
We	shall	specify	here	what	“equivalence”	means.

We	have	seen	that	both	work	and	heat	are	forms	of	energy	exchange.	The
two	quantities	are	measured	in	completely	different	manners	and	a	priori	look
very	different.	However,	they	are	strongly	connected.	Indeed,	engines	absorb
heat	and	produce	work.	Let	us	look	at	two	examples.

In	the	first	example	(Fig.	2.15a),	which	is	a	system	we	have	already
considered,	the	gas	is	contained	in	a	cylinder	closed	by	a	piston,	on	which	there
is	a	weight,	producing	the	force	F	a	.	Suppose	now	that	we	give	heat	to	the
system	using	a	flame	through	the	bottom	of	the	cylinder,	which	is	diathermic.
We	observe	that	the	gas	expands	and	the	piston	rises,	elevating	the	weight	with
it.	Work	is	produced.	The	process	is	the	constant	pressure	expansion	we
considered	in	Chap.	5.

Fig.	2.15 	a	A	gas	in	a	cylinder,	b	a	rubber	band

In	the	second	example,	which	we	have	also	already	considered,	we	have	a
weight	hanging	on	a	rubber	band	(Fig.	2.15b).	If	we	gently	heat	the	band	with	a
flame,	it	contracts,	because	the	elastic	constant	increases	with	the	temperature.
The	weight	rises.	Again,	the	system	absorbs	heat	and	produces	work,	which	is
the	product	of	the	tension	(that	is	constant)	and	the	displacement.



We	cannot	conclude	from	these	examples	that	the	work	produced	by	a
system	is	equal	to	the	heat	it	absorbs.	As	a	matter	of	fact,	both	exchanges	also
vary	the	energy	of	the	system.	Here,	we	mean	energy	related	to	the	internal,
thermodynamic	state	of	the	system,	which	is	different	from	the	mechanical
kinetic	and	potential	energies.	It	is	the	internal	energy	of	the	system	that	we	shall
define	in	the	next	section.	Before	doing	that,	we	shall	prove	its	fundamental
property:	that	the	variation	of	the	internal	energy	of	a	system	is	always	equal	to
the	algebraic	sum	of	the	heat	received	and	the	work	done.	This	is	the	first	law	of
thermodynamics.

Indeed,	the	first	law	of	thermodynamics	is	the	energy	conservation	law	.	In
mechanics,	the	energy	of	an	isolated	system	is	conserved	only	if	all	the	acting
forces	are	conservative.	The	decrease	of	mechanical	energy	observed	in	the
presence	of	dissipative	forces	does	not	really	mean	that	energy	is	not	conserved.
The	point	is	that	the	mechanical	energy	is	not	the	only	form	of	energy	in	the
game.	As	a	matter	of	fact,	the	energy	that	seems	to	be	lost	actually	did	transform
into	internal	energy.

Clearly,	what	we	have	just	stated	needs	to	be	experimentally	proven.	We
shall	now	describe	the	elegant	and	fundamental	experiment	conducted	by	James
Prescott	Joule	(UK,	1818–1889)	in	1845.	The	experiment	establishes	what	is
known	as	equivalence	between	heat	and	work.	More	importantly,	it	establishes
the	existence	of	internal	energy.

Figure	2.16	shows	a	schematic	of	the	experiment,	which	is	performed	in	two
phases,	(a)	and	(b)	in	the	figure.	A	thermally-insulated	vessel	contains	water	(or
another	liquid).	A	vertical	axis	with	a	number	of	horizontal	vanes	is	placed
inside	of	the	vessel	with	enough	room	so	that	it	can	rotate	under	the	action	of
two	external	weights	linked	to	a	system	of	pulleys.	Other	vanes	soldered	onto	the
walls	are	interleaved	with	the	mobile	ones	to	hinder	the	common	mode	motion
of	the	water.	The	water	is	forced	to	move	slowly	between	the	vanes,	to	maximize
the	mechanical	energy	dissipation	in	the	liquid.



Fig.	2.16 The	Joule	experiment;	(a)	the	first	process;	(b)	the	second	process

We	determine	the	initial	state	of	the	system	by	measuring	its	mass	M	and	its
temperature	T	i	.	The	mass	of	each	weight	is	m.

In	the	first	process,	we	perform	the	mechanical	work	W	1	on	the	system	with
no	heat	exchange	(Q	1	=	0).	We	take	the	weights	in	their	higher	position	and	let
them	descend.	They	move	very	slowly	and	we	can	neglect	their	kinetic	energy.
We	measure	the	drop	h.	The	work	done	on	the	system	(remember	the	sign
convention)	is	 .

In	the	second	process,	we	bring	the	system	back	into	its	initial	state.	We	do
that	extracting	heat	without	any	work	being	done	(W	2	=	0).	We	take	the	thermal
insulation	off	of	the	bottom	of	the	vessel	and	we	lay	it	on	a	calorimeter,	as
shown	schematically	in	Fig.	2.16b.	While	the	system	gives	away	heat	to	the
calorimeter,	we	measure	its	temperature,	and	we	stop	the	process	when	it	is	back
to	the	initial	value	T	i	.	Let	Q	2	be	the	heat	measured	by	the	calorimeter,	which	is
also	the	heat	given	away	by	the	system.	Overall,	the	process	is	a	cycle.

The	total	work	in	the	cyclic	process	is	 	and	the
heat	exchanged	is	 .	We	take	the	ratio	between	the	two
quantities	we	measured	and	we	find

	 (2.16)
Up	to	now,	we	have	not	proven	anything.	Indeed,	the	ratio	of	two	quantities

must	have	a	value.	However,	if	we	repeat	the	experiment	with	different
quantities	of	water,	different	liquids,	different	quantities	of	work,	etc.,	provided
that	the	process	is	cyclic,	we	find	that	the	ratio	of	total	work	and	total	heat
always	has	the	value	of	Eq.	(2.17),	within	the	experimental	uncertainties.	The



symbol	for	the	ratio	is	J	and	we	write	that,	for	every	cyclic	process	,

	 (2.17)
J	is	called	the	mechanical	equivalent	of	heat	.	We	can	also	state,	in	an

equivalent	manner,	that	experiments	show	that.	In	any	thermodynamic	cyclic
process,	the	equation

	 (2.18)
holds,	where	W	is	the	sum	of	all	the	works	taken	as	positive	if	done	by	the
system,	negative	if	done	on	the	system,	and	Q	is	the	sum	of	all	the	heat
exchanges,	taken	as	positive	if	absorbed	by	the	system,	negative	if	released	by	it.
Notice	that	we	established	the	equation	using	irreversible	processes.	The
equations	we	found,	Eq.	(2.19)	in	particular,	hold	for	any	cyclic	process.

Having	shown	that	heat	and	work	are	homogenous	physical	quantities,	we
can	measure	both	of	them	in	the	same	measurement	unit.	From	now	on,	we	shall
measure	the	heat	in	joules.	Equation	(2.18)	becomes

	 (2.19)

2.8	 First	Law	of	Thermodynamics
In	the	previous	section,	we	experimentally	established	an	extremely	important
law	of	physics,	the	law	of	energy	conservation	.

Let	us	demonstrate	that.	Consider	two	different	equilibrium	states	A	and	B	of
any	thermodynamic	system	and	two	arbitrary	processes	1	and	2	from	A	to	B,	as
well	as	a	third	one	3,	from	B	to	A,	as	shown	Fig.	2.17.	The	processes	1	+	3	and
2	+	3	are	cyclic.	We	then	apply	Eq.	(2.19)	to	both	of	them,	obtaining	

	and	 .	Subtracting	the	two	relations,
we	have	 ,	or

Fig.	2.17 Processes	from	A	to	B	and	from	B	to	A

Given	the	arbitrary	nature	of	processes	1	and	2,	we	can	conclude	that	the
quantity	Q	−	W	depends	only	on	the	origin	and	the	end	of	the	process	and	not	on



the	particular	transformation.	This	quantity	can	be	written	as	the	difference
between	the	values	in	the	final	and	initial	states	of	a	state	function	which	we	call
U:

	 (2.20)
State	function	means	that	U	is	a	function	of	the	thermodynamic	coordinates

(temperature,	pressure,	volume,	chemical	species	concentration,	tension	for	a
rubber	band,	etc.).	With	U(A),	we	mean	the	value	of	the	function	for	the
coordinates	of	the	state	A.	U	is	the	internal	energy	of	the	system.	Equation	(2.20)
defines	the	internal	energy	a	part	of	an	additive	constant,	as	is	the	case	with
energies.

Internal	energy	is	a	thermodynamic	quantity.	As	such,	it	regards	the
macroscopic	state	of	the	system.	Indeed,	thermodynamics	does	not	deal	with	the
underlying	microscopic	physics.	We	shall	come	to	that	in	Chap.	5	when	we
address	statistical	mechanics.	We	anticipate	a	few	hints	here.	Consider	a	system
made	of	only	one	chemical	species.	It	is	composed	of	a	very	large	number	of
identical	molecules,	on	the	order	of	the	Avogadro	number.	The	molecules	move
at	different	speeds,	which	increase,	on	average,	with	increasing	temperature.	As
a	matter	of	fact,	their	mean	kinetic	energy	is	proportional	to	the	absolute
temperature.	In	addition,	the	molecules	have	interactions	between	them.	The
internal	energy	of	the	system	is	the	sum	of	the	kinetic	energy	and	potential
energies	of	its	molecules	(namely	their	mechanical	energies).	If	the	system	is	an
ideal	gas,	the	molecules	are	considered	non-interacting	and	their	energy	is	only
kinetic.	The	molecules	of	a	monoatomic	gas	can	be	considered	point-like	and
their	kinetic	energies	are	those	of	their	center	of	mass.	If	the	gas	is	polyatomic,
the	kinetic	energy	about	the	centers	of	mass	must	be	considered	too.	If	more
chemical	species	are	present,	the	internal	energy	can	vary	when	chemical
reactions	take	place.

We	now	come	back	to	thermodynamics.	Equation	(2.20)	is	the	mathematical
expression	of	the	first	law	of	thermodynamics	.	In	particular,	if	the	system	is
isolated,	both	work	and	heat	exchanges	are	zero	and	the	internal	energy	is
constant	for	any	process.

Equation	(2.20)	has	a	completely	general	validity,	for	whatever	process,
provided	the	initial	and	final	states	are	equilibrium	states.	Otherwise,	we	cannot
define	any	function	of	the	thermodynamic	coordinates,	because	these
coordinates	are	not	defined.

Consider	now	the	particular	case	of	quasi-static	,	in	which	all	the
intermediate	states,	not	only	those	that	are	extreme,	are	equilibrium	states.
Consequently,	the	internal	energy	is	defined	in	the	intermediate	states	as	well,



and	Eq.	(2.20)	also	holds	for	any	elementary	part	of	the	processes,	in	the	form

	 (2.21)
Pay	attention	to	the	fact	that,	from	the	mathematical	point	of	view,	dU	is	the

differential	of	a	function	(U),	namely	an	exact	differential,	while	δW	and	δQ	are
not.	They	are	infinitesimal	quantities,	but	there	is	no	function	for	which	they
would	be	differentials.	For	this	reason,	we	use	the	symbol	δ	rather	than	d.

We	now	consider	the	changes	in	internal	energy	for	some	relevant	processes.
Isochoric	processes	.	The	work	is	zero	by	definition.	The	variation	in	internal

energy	is	equal	to	the	absorbed	heat:

	 (2.22)
This	was	the	case	for	the	second	process	of	the	Joule	experiment	of	the

previous	section.	In	general,	we	can	state	that	the	internal	energy	of	a	system
increases	through	heating	(namely	giving	it	heat)	at	constant	volume,	and
decreases	through	cooling	at	constant	volume.

Adiabatic	processes	.	The	exchanged	heat	is	zero.	The	variation	in	internal
energy	is	the	opposite	of	the	work	done	by	the	system:

	 (2.23)
This	was	the	case	for	the	first	process	of	the	Joule	experiment.	In	general,

when	the	system	does	work	on	the	surroundings	W	>	0,	without	heat	exchange,
as	in	an	adiabatic	expansion,	its	internal	energy	diminishes.	Contrastingly,	the
internal	energy	increases	in	any	adiabatic	compression.

Example	E	2.1
A	body	of	mass	m	falls	on	the	floor	from	a	height	h	1	and,	after	the	collision,
bounces	back	to	the	height	h	2.	Assuming	that	the	body	absorbs	all	the	dissipated
mechanical	energy,	how	much	does	its	internal	energy	vary?

The	dissipated	mechanical	energy	is	 .	This	energy	is	lost	in	the
collision	and	corresponds	to	a	mechanical	work	done	on	the	body.	Under	the
thermodynamic	conventions,	it	is	negative.	Indeed,	the	heat	exchanges	during
the	brief	instant	of	the	collision	can	be	neglected.	Hence,	for	the	first	law,	the
variation	of	internal	energy	is	 .

As	we	shall	see,	the	internal	energy	is	an	increasing	function	of	temperature.
Consequently,	the	final	temperature	of	the	body	is	higher	than	the	initial	one.	If
we	wish,	we	can	bring	back	the	body	to	its	initial	state	by	extracting	a	quantity
of	heat	equal	to	ΔU,	that	is,	to	the	lost	mechanical	energy.	One	can	find	written
instances	stating	that	the	process	is	a	transformation	of	work	into	heat.	This
statement	is	wrong.	The	work	has	transformed	into	internal	energy.



Example	E	2.2
We	heat	a	room	having	volume	V	from	temperature	T	1	to	temperature	T	2.
Knowing	that	the	internal	energy	of	a	gas	is	 	(see	Sect.	2.12),	where	c	V
is	a	constant,	how	much	does	the	internal	energy	vary?	We	must	pay	attention,
because	the	quantity	of	air	at	the	end	of	the	process	is	different	from	that	at	the
beginning.	Indeed,	even	if	the	room	is	closed,	some	leakage	under	the	windows
and	the	doors	will	always	be	present.	When	the	temperature	of	the	air	increases,
the	air	expands	and	becomes	less	dense,	the	pressure	remaining	constant.	We	are
dealing	with	a	constant	pressure	process	in	an	open	system.	Let	n	1	and	n	2	be	the
numbers	of	moles	in	the	initial	and	final	states,	respectively.	We	write	the	gas
equation	as	 	and	notice	that	p	and	V	are	constant	during	the	process.
Consequently,	 	and	also	 .

2.9	 Specific	Heats
If	a	body	absorbs	the	heat	δQ,	its	temperature	increases	by	dT.	The	ratio	of	the
two	quantities	is	called	the	heat	capacity	of	the	body.

	 (2.24)
As	already	mentioned	in	Sect.	2.6,	it	has	been	experimentally	found	that	the

heat	capacity	of	a	given	substance,	under	the	same	thermodynamic	conditions,	is
proportional	to	its	mass.	We	thus	define	it	as	specific	heat,	namely	the	heat
capacity	per	unit	mass.	Thus,	if	the	temperature	of	a	body	of	mass	m	of	that
substance	increases	by	dT	when	it	absorbs	the	heat	δQ,	the	specific	heat	of	the
substance	is

	 (2.25)
Note	that	heat	capacity	is	a	characteristic	of	a	body,	while	specific	heat	is	a

characteristic	of	a	substance.
The	definitions	we	just	gave	are	not	sufficiently	precise,	because	the	heat

absorbed	by	a	body	for	a	certain	increase	in	its	temperature	depends	on	the
process	in	which	the	absorption	takes	place.	Consequently,	a	substance	does	not
have	just	one,	but	indeed	many,	or	even	infinite,	specific	heats.

Consider	the	case	of	the	hydrostatic	system.	Figure	2.18	represents	two
isothermal	transformations	of	such	a	system,	one	at	temperature	T,	and	the	other
at	T	+	dT.	Starting	from	a	state	at	temperature	T,	namely	a	point	on	that
isothermal	curve,	we	can	pass	on	the	second	curve,	namely	increase	temperature



by	dT,	in	an	infinite	number	of	different	ways	(see	Fig.	2.18).	For	each	of	them,
the	heat	exchange	δQ	is	different.	The	system	has	infinite	specific	heats.

Fig.	2.18 Elementary	heat	exchanges	at	constant	volume	and	at	constant	pressure

Particularly	important	are	the	specific	heats	at	constant	volume	and	constant
pressure.	In	the	particular	case	of	a	hydrostatic	system,	whose	states	are
represented	by	points	along	the	pV	plane,	all	the	other	specific	heats	are	linear
combinations	of	those	two	(see	Fig.	2.18).	If	the	temperature	of	a	mass	m	of	a
substance	increases	by	dT	when	it	absorbs	the	heat	δQ	p	or	δQ	V	,	respectively,	at
constant	pressure	and	constant	volume,	the	specific	heats	of	the	substance	are

	 (2.26)
Other	useful	quantities	are	the	molar	heats,	which	are	the	heat	capacities	of	a

mole	of	the	substance.	Namely,	if	the	temperature	of	n	moles	of	a	substance
increases	by	dT	when	it	absorbs	the	heat	δQ	p	or	δQ	V	,	the	molar	heats	of	the
substance	are

	 (2.27)
Consider	now	a	hydrostatic	system	and	suppose	that	the	entire	heat	exchange

takes	place	in	quasi-static	processes.	The	first	law	tells	us	that

	 (2.28)
If	the	process	is	at	a	constant	volume,	dV	=	0,	and	consequently	δQ	V		=	dU.

All	the	absorbed	heat	goes	towards	increasing	the	internal	energy,	and	we	can
write	for	both	the	specific	and	the	molar	heat

	 (2.29)
where	the	subscripts	indicate	that	the	derivatives	are	taken	at	constant
volume	V.	This	notation,	often	used	in	thermodynamics,	is	necessary	because	the
internal	energy	(and	other	state	functions)	does	not	depend	solely	on	the	volume,



but	also	on	the	other	thermodynamic	coordinates.
We	now	heat	(i.e.,	give	heat	to)	the	system	at	constant	pressure.	The	heat

now	goes	in	part	towards	increasing	the	internal	energy	and	in	part	towards
producing	work,	because	the	volume	of	the	system	varies.	The	first	law	is	now

	 (2.30)
where	we	could	write	the	last	member	because	the	pressure	is	constant.	We
see	that	the	heat	is	now	equal	to	the	differential	of	the	function

	 (2.31)
This	is	another	state	function	of	the	system,	because	U,	p	and	V	are	such.

This	is	called	the	enthalpy	of	the	system.	We	can	write	Eq.	(2.30)	as

	 (2.32)
The	expression	tells	us	that	the	heat	transferred	to	the	system	at	constant

pressure	determines	an	equal	variation	of	the	enthalpy.
In	practice,	we	often	operate	at	atmospheric	pressure	and,	consequently,	the

heat	exchanges	are	at	constant	pressure.	Some	examples	are	the	chemical
reactions,	which	usually	take	place	in	open	containers.	In	these	cases,	the
reaction	heat	is	the	enthalpy	variation	from	the	initial	to	the	final	state.

In	conclusion,	the	specific	and	molar	heats	at	constant	pressure	can	be
expressed	as	derivatives	of	enthalpy:

	 (2.33)
We	observe	that	the	specific	and	molar	heats	at	constant	pressure	are	always

larger	than	those,	of	the	same	substance,	at	constant	volume:

	 (2.34)
One	might	believe	this	difference	to	be	due	simply	to	the	fact	that,	in	the

exchange	at	constant	volume,	all	the	heat	goes	towards	increasing	the	internal
energy,	while	at	constant	pressure,	part	of	it	goes	towards	external	work,	because
the	system	expands.	However,	this	is	not	so.	Indeed,	we	also	see	that	C	p		>	C	V
in	the	(very	few)	cases	in	which	the	substance	contracts,	rather	than	expands,
through	heating.	This	is	the	case	for	water	between	0	and	4	°C.	The	property	is	a
consequence	of	a	general	law	of	thermodynamics,	the	Le	Châtelier	principle	,
which	we	shall	discuss	in	the	next	section.

2.10	 Le	Chãtelier’s	Principle
The	Le	Châtelier	principle,	or	law	of	mobile	equilibrium	,	was	established	by
Henry	Louis	Le	Châtelier	(France,	1850–1936)	in	1885.	It	allows	us	to	foresee,



in	several	cases	and	without	any	calculation,	the	direction	in	which	a
thermodynamic	system	will	change	in	response	to	a	change	in	the	external
conditions.	The	law	states	that,	if	the	conditions	external	to	a	thermodynamic
system	in	equilibrium	change,	the	equilibrium	of	the	system	will	change	in	the
direction	to	oppose	to	the	variation.

The	law	is	useful	in	thermodynamics	and	chemistry.	Suppose	we	have	a
container	with	different	chemical	species	(A,	B,	C,	D)	that	react	with	the	reaction

The	reaction	can	proceed	in	both	directions.	The	chemical	equilibrium	is
reached	when	the	concentrations	of	the	four	substances	remain	constant.
Suppose	the	reaction	from	left	to	right	to	be	endothermic.	In	this	case,	if	the
temperature	is	increased,	the	equilibrium	moves	to	the	right	side	to	increase	the
concentration	of	the	species	C	and	D.	Indeed,	this	implies	the	absorption	of	heat,
opposing	the	external	change	in	this	way	(the	temperature	increase).	The
opposite	happens	for	exothermic	reactions.

Let	us	show	that	a	hypothetical	system	that	does	not	obey	the	Le	Châtelier
principle	cannot	have	equilibrium	states.	Consider,	for	example,	an	exothermic
reaction	favored	by	an	increase	in	the	external	temperature.	In	the	presence	of	an
increase	in	the	temperature,	even	if	very	small,	the	reaction	of	the	system	would
be	an	increase	in	released	heat.	This	would	cause,	in	turn,	a	further	increase	in
the	temperature	and	a	further	increase	in	the	reaction	process.	The	process	would
not	stop	until	all	the	substances	that	were	able	to	react	have	completely
disappeared.	Such	behavior	does	not	contradict	any	thermodynamic	principle,
but	it	does	stand	in	contrast	with	the	existence	of	equilibrium	states.	This
argument	should	make	clear	the	nature	of	the	Le	Châtelier	principle.	It	is	not	a
consequence	of	the	laws	of	thermodynamics	and,	additionally,	does	not	have	the
same	importance.	It	is,	however,	useful,	because	it	characterizes	the	states	of
stable	equilibrium.

We	now	use	the	Le	Châtelier	principle	to	show	that	the	specific	heat	at
constant	pressure	is	always	larger	than	that	at	constant	volume.	Let	us	transfer	a
certain	quantity	of	heat	to	the	system	at	constant	volume.	Let	dT	V	be	the
corresponding	temperature	increase.	As	a	consequence,	the	pressure	of	the
system	varies	too,	thus	altering	the	equilibrium	conditions.	Notice	that	the
pressure	has	increased	if	the	system	expands	upon	heating	and	has	decreased	if	it
contracts.	The	Le	Châtelier	principle	tells	us	that	the	equilibrium	of	the	system
moves	in	opposition	to	the	change	in	conditions.	Namely,	it	has	to	return	to	the
initial	pressure.	Its	pressure	must	decrease	in	the	former	case,	and	increase	in	the
latter.	The	process	must	imply	a	certain	release	of	heat	(it	must	oppose).	This



means	that	the	change	in	temperature	at	constant	pressure	dT	p	is	less	than	that	at
constant	volume	dT	V	,	for	the	same	heat	quantity	δQ.	It	follows	that	the	specific
heat	at	constant	pressure	is	larger	than	that	at	constant	volume.

We	shall	make	further	use	of	the	principle	in	Sect.	4.3.

2.11	 Solid	Body
In	this	section,	we	consider	a	thermodynamic	system	consisting	of	a	solid	body.
Its	shape	and	volume	are	practically	invariable.	Approximately,	we	can	neglect
thermal	dilatation.	Thus,	the	only	thermodynamic	variable	is	the	temperature.
The	internal	energy	is	consequently	a	function	of	the	temperature	alone,	U(T).
Consider	a	state	A	with	temperature	T	A	and	a	generic	state	P	with	temperature	T.
For	whatever	process	leading	from	A	to	P,	the	first	law	states	that

	 (2.35)
The	work	of	p	dV	type	is	zero	because	the	volume	does	not	vary.	In	principle,

other	types	of	work	might	be	done	on	the	body,	for	example,	by	hammering	or
wiping.	But	we	do	not	have	any	work	of	this	type	in	the	process	we	are
considering.	Then,	the	absorbed	heat	is	equal	to	the	variation	in	internal	energy,
and	we	have

	 (2.36)
If	the	process	is	quasi-static,	we	can	write	the	same	for	all	its	infinitesimal

elements:

	 (2.37)
If	m	is	the	mass	and	c	the	specific	heat	of	the	body,	we	have

	 (2.38)
Note	that,	as	we	have	assumed	the	volume	to	be	invariable,	the	body	has

only	one	specific	heat,	namely	at	constant	pressure.
We	can	then	write	for	the	derivative	of	the	energy	with	respect	to	the

temperature

	 (2.39)
where	we	have	explicitly	written	that	the	specific	heat	might	be	a	function	of
temperature.	We	now	obtain	the	internal	energy	by	integration:

	 (2.40)



In	practice,	the	temperature	dependence	of	the	specific	heat	of	several
substances	is	modest,	provided	one	considers	temperature	intervals	of	several
degrees.	Under	these	conditions,	considering	the	specific	heat	constant,	we	have

	 (2.41)
We	shall	come	back	to	the	specific	heats	of	solids	in	Sect.	5.3.
Let	us	now	go	back	to	the	calorimeter	we	have	considered	in	Sect.	2.6.	It	can

be	used	to	measure	the	specific	heat	of	solid	substances.	Suppose,	for	example,
we	want	to	measure	the	specific	heat	c	of	copper.	We	proceed	as	follows.	We
heat	a	small	block	of	pure	copper	of	mass	M	at	the	temperature	T	C	,	higher	than
that	of	the	water	in	the	calorimeter.	We	measure	the	water	temperature	T	i	.	We
introduce	the	block	into	the	water	and	close	the	plug.	We	read	the	temperature	of
the	water	and	wait	for	it	to	stabilize	at,	say,	T	f	.	Block	and	water	now	have	the
same	temperature.	Let	us	write	down	that	the	heat	released	by	the	block	is	equal
to	that	absorbed	by	the	water,	namely

	 (2.42)
where	we	have	remembered	that	the	specific	heat	of	water	is	equal	to	1.
From	this	equation,	we	have	c.	In	practice,	a	number	of	measures	that	we	did	not
mention	are	necessary.	The	most	important	is	taking	into	account	the	heat
absorbed	by	the	walls	of	the	calorimeter,	by	the	thermometer	and	by	any	other
auxiliary	equipment	that	might	be	present	in	the	calorimeter,	referred	to	as	the
calorimeter	water	equivalent.

Table	2.1	reports	the	specific	heats	of	several	substances	at	25	°C
temperatures	for	several	substances	in	J	kg−1	K−1.

Table	2.1 Specific	heats	of	several	materials	at	25	°C	in	J	kg−1	K−1

Substance Spec.	heat	(kJ	kg−1	K−1) Substance Spec.	heat	(kJ	kg−1	K−1)
Acrylic 1.4–1.5 Hydrogen 14.27
Aluminum 0.90 Ice	(0	°C) 2.05
Argon 0.52 Iron 0.44
Beryllium 1.83 Lead 0.13
Bricks 0.85 Mercury 0.14
Calcium 0.65 Neon 1.03
Cesium 0.24 Nitrogen 1.04
Copper 0.39 Oxygen 0.92
Diamond 0.52 Platinum 0.13
Germanium 0.32 Silicon 0.70
Glass	(crown) 0.67 Silver 0.24



Glass	(flint) 0.50 Sulfur	(yellow) 0.73
Gold 0.13 Tungsten 0.13
Graphite 0.71 Zinc 0.39
Helium 5.19 Wood 1.67

2.12	 Internal	Energy	of	the	Ideal	Gas
Consider	a	hydrostatic	system.	As	we	know,	for	a	given	mass,	only	two	of	the
three	thermodynamic	variables,	p,	V	and	T,	are	independent.	Consequently,	its
internal	energy	is,	in	general,	a	function	of	two	variables.	Even	if	their	choice	is
arbitrary,	it	is	usually	convenient	to	choose	volume	and	temperature.	Indeed,	at
the	microscopic	level,	the	kinetic	energy	of	the	molecules	is	proportional	to	the
temperature,	as	we	have	already	mentioned.	In	addition,	the	potential	energy	of
their	interactions	depends	on	the	distances	between	molecules,	whose	mean
value	obviously	depends	on	the	volume.	In	conclusion,	we	shall	write	the
internal	energy	as	U	(V,	T).

J.	Joule	conducted	an	experiment	that	gave	important	information	on	the
internal	energy	of	gases,	known	as	the	free	expansion	experiment	.	Figure	2.19
shows	the	scheme	of	the	experiment.	The	two	vessels	A	and	B	have	metallic
walls.	Consequently,	we	can	consider	their	volumes	to	be	invariable.	The	vessels
are	connected	by	a	tube	that	can	be	closed	or	opened	with	the	tap	R.	Joule
introduced	a	gas	at	high	pressure	into	vessel	A	(up	to	200	kPa)	and	pumped	the
air	out	of	vessel	B	(R	being	closed,	obviously).	Opening	R,	the	gas	expands	to
fill	both	vessels.	Notice	that	no	external	work	is	done	in	the	expansion,	as	the
gas	expands	in	a	space	that	was	prepared	to	accept	it.	The	expansion	does	not
push	anything.	The	external	work	is	zero,	because	the	total	volume	in	the	rigid
surrounding	walls	does	not	vary.	This	process	is	called	free	expansion	or
expansion	without	external	work.

Fig.	2.19 The	Joule	free	expansion	experiment



The	two	vessels,	whose	walls,	being	metallic,	were	diathermic,	had	been
lodged	in	a	calorimeter.	Joule	did	not	measure	any	temperature	change	during
the	expansion.	The	following	two	conclusions	can	be	extracted	from	the	result:
(1)	the	global	heat	exchange	during	the	free	expansion	is	zero;	(2)	the
temperatures	of	the	gas	before	and	after	the	expansion	are	the	same,	considering
that	the	gas	is	in	thermal	equilibrium	with	the	calorimeter	before	and	after	the
process.

We	note	here	that	the	sensitivity	of	the	experiment	is	rather	limited,	because
the	heat	capacity	of	the	gas	is	small.	Joule	worked	with	high	initial	pressures	to
partially	reduce	this	limitation.	However,	in	doing	so,	he	moved	away	from	the
ideal	gas	behavior.	The	above	conclusions	should	be	regarded	as	valid	only	in	a
first	approximation.	We	shall	see	in	Sect.	4.4	that	they	are	valid	only	for	the	ideal
gas,	as	later	established	by	Joule	himself	in	more	sensitive	experiments
performed	in	collaboration	with	W.	Thomson.

Let	us	now	go	back	to	the	consequences	of	the	above	observations.	We	can
talk	of	infernal	energy	in	the	initial	and	in	the	final	states	because	they	are
equilibrium	states	(the	intermediate	states	are	not	so,	but	this	does	not	matter).	In
the	process	leading	from	the	former	to	the	latter,	both	work	and	heat	exchanges
were	zero.	Consequently,	 .	Here	V	i	is	the	initial

volume	of	the	gas	(one	vessel),	V	f	is	its	final	volume	(two	vessels)	and	T	is	the
temperature	that	does	not	vary.	The	internal	energy	is	the	same	in	the	two	states,
while	their	volumes	are	different.	Consequently,	the	internal	energy	does	not
depend	on	the	volume.	It	can	depend	only	on	temperature.	For	an	ideal	gas,	we
can	write

	 (2.43)
We	can	reach	the	same	conclusion	with	a	different	argument.	We	start	from

the	expression	of	the	specific	heat	at	constant	volume	Eq.	(2.29)

	 (2.44)
and	integrate	it	between	a	reference	state	A	and	the	generic	state	P,	obtaining

	 (2.45)

Here,	we	need	experimental	input	to	know	how	the	molar	heat	depends	on
temperature.	Experiments	tell	us	that	it	is	almost	constant	(exactly	constant	for
ideal	gases)	and	we	have



	 (2.46)
where,	to	be	complete,	we	have	also	included	the	expression	in	terms	of	the
specific	heat.

Let	us	now	consider	the	other	state	function	we	have	met,	enthalpy.	For	the
ideal	gas,	it	also	depends	on	temperature	alone.	It	is

	 (2.47)
Taking	the	derivative	with	respect	to	temperature	and	dividing	it	by	the

number	of	moles	n,	we	have

	 (2.48)
There	has	not	been	any	need	to	specify	whether	the	derivatives	are	made	at

constant	pressure	or	at	constant	volume,	because	neither	enthalpy	nor	internal
energy	depends	on	these	variables.	We	then	recognize	that	the	left-hand	side	is
the	molar	heat	at	constant	pressure	and	the	first	term	in	the	right-hand	side	is	the
molar	heat	at	constant	volume,	and	can	write

	 (2.49)
This	equation	is	called	the	Mayer’s	relation	for	ideal	gases.	It	states	that	the

difference	between	the	molar	heats	at	constant	pressure	and	at	constant	volume
has	a	universal	value	for	all	the	gases,	the	gas	constant,	within	the	limits	they	can
be	considered	as	ideal.

We	notice	that	in	the	case	we	are	considering,	the	difference	between	the	two
heats	is	due	to	the	fact	that	when	the	gas	is	heated	at	constant	pressure,	it
performs	an	external	work.	Contrastingly,	no	external	work	is	done	in	the
heating	at	constant	volume.	In	the	latter	case,	all	the	heat	goes	towards
increasing	the	internal	energy,	while	in	the	former,	part	of	it	goes	towards
external	work.	As	we	know,	however,	this	is	not	the	reason	why	C	p		>	C	V	.

A	further	experimental	result	is	the	dependence	of	the	molar	heats	of	the
gases	on	the	type	of	their	molecules.	All	the	monoatomic	gases	have	the	same
molar	heat	at	constant	volume.	It	is	(almost)	independent	of	temperature	down	to
rather	low	temperatures.	Its	value	is

	 (2.50)
The	situation	of	the	diatomic	gases	is	more	complicated.	However,	the	larger

fraction	of	these	gases	(especially	those	with	less	massive	molecules),	at	ambient
temperature	and	in	a	rather	wide	interval	of	temperatures,	have	molar	heats
around	the	value



	 (2.51)
The	simplicity	of	the	relations	just	determined	cannot	be	casual.	As	a	matter

of	fact,	they	are	deeply	rooted	in	statistical	mechanics,	as	we	shall	see	in	Sect.	5.
2.

Let	us	use	them	together	with	the	Mayer’s	relation.	We	obtain	for	the	molar
heats	at	constant	pressure

	 (2.52)
In	addition,	defining	the	dimensionless	parameter

	 (2.53)
we	have

	 (2.54)
The	above	conclusions	would	be	rigorously	valid	for	the	ideal	gases	and

approximately	so	for	many	real	gases,	within	large	intervals	of	the
thermodynamic	variables.	We	shall	study	the	real	gases	in	Chap.	4.	Here,	we
report	the	molar	heats	of	some	gases	at	room	temperature	in	Table	2.2.

Table	2.2 Molar	heats	of	some	gases	at	25	°C	in	J	mol−1	K−1

	 C	p C	V C	p		−	C	V C	p	/C	V
Monoatomic Ar 20.8 12.5 8.3 1.67

He 20.9 12.5 8.3 1.67
Diatomic Air 29.1 20.8 8.3 1.40

N2 29.1 20.8 8.3 1.40

O2 29.4 21.1 8.3 1.40

H2 28.8 20.4 8.3 1.41

Polyatomic CO2 37.0 28.5 8.5 1.30

NH3 36.8 27.8 9.0 1.32

CH4 35.6 27.2 8.4 1.31

2.13	 Adiabatic	Processes	in	Gases
We	shall	now	discuss	the	quasi-static	adiabatic	processes	of	an	ideal	gas.

For	example,	we	can	expand	or	compress	a	gas	adiabatically	and	quasi-



statically	by	enclosing	it	in	a	cylinder	with	a	piston.	All	the	surrounding	surfaces
should	be	adiabatic.	We	shall	move	the	piston	very	slowly	in	one	or	the	other
direction.	In	expanding,	the	gas	delivers	external	work.	In	the	absence	of	a	heat
exchange,	all	the	work	done	corresponds	to	a	decrease	in	internal	energy.
Internal	energy	being	a	function	of	temperature,	the	gas	cools	down.
Contrastingly,	temperature	increases	in	adiabatic	compression.	You	can	feel	that
when	you	inflate	the	tire	of	a	bike.	We	now	seek	the	quantitative	relation
between	temperature	and	volume.

Consider,	for	simplicity,	a	mole	of	gas.	We	apply	the	first	law	to	an
infinitesimal	section	of	the	process,	in	which,	clearly,	δQ	=	0.	We	have

Using	Eq.	(2.44)	and	eliminating	p	with	the	state	equation,	we	have

namely

Integrating,	within	the	limits	in	which	we	can	consider	C	V	to	be	constant,	we
get

We	take	the	exponential	of	this	expression	and	obtain

We	want	this	expression	in	terms	of	the	ratio	γ	of	the	specific	heats,
Eq.	(2.53),	which	we	write	as

Hence,	the	expression	we	have	found	is	just

	 (2.55)
This	expression	tells	us	how	much	a	gas	cools	down	in	an	adiabatic

expansion.	Consider,	for	example,	a	quantity	of	air,	whose	volume	doubles
adiabatically.	The	air	is	mainly	N2	and	O2,	two	diatomic	gases.	Hence,	γ	=	1.4.
The	temperature	decreases	by	the	factor	(1/2)0.4	=	0.76.

Equation	(2.55)	can	be	written	in	two	other	equivalent	forms,	which	are
sometimes	useful,	using	the	sate	equation	pV	=	RT.	As	immediately	found,	they
are



	 (2.56)
and

	 (2.57)
Equation	(2.56)	is	the	equation	of	the	adiabatic	transformations	in	the	pV

plane.	Let	us	compare	it	with	the	equation	of	the	isothermal	processes,	namely
pV	=	constant.	The	adiabatic	curves	are	similar	to	the	isothermal	curves,	but	are
steeper	because,	in	any	case,	γ	>	1.

Figure	2.20	shows	two	isothermal	(dotted)	and	two	adiabatic	(continuous)
curves.

Fig.	2.20 Figure	shows	two	isothermal	(dotted)	and	two	adiabatic	(continuous)	curves

2.14	 Compressibility	and	Thermal	Expansion
Gases	are	easy	to	compress	and	to	expand.	A	small	pressure	increase	is	sufficient
to	change	their	volume	considerably.	The	same	is	not	true	for	condensed	bodies,
namely	solids	and	liquids.	However,	even	those	are	compressible,	if	subject	to
large	enough	pressures.	As	the	volume	changes	if	the	temperature	also	varies,
compressibility	must	be	defined	at	constant	temperature.

The	isothermal	compressibility	is	defined	as

	 (2.58)
Note	that	the	derivative	is	negative,	because	the	volume	diminishes	when	the

pressure	increases.	The	minus	sign	in	the	definition	is	used	to	have	κ	be	positive.
The	dimensions	of	κ	are	the	reciprocal	of	a	pressure,	as	immediately	seen	in
Eq.	(2.58).

Let	us	consider	some	orders	of	magnitude.	The	isothermal	compressibilities
of	liquids	are	in	the	range	of	10−11–10−10	Pa−1.	Suppose	we	want	to	have	a
relative	variation	of	volume	of	one	per	cent,	namely	dV/V	=	10−2.	If	κ	=	10−10	Pa
−1,	the	change	of	pressure	must	be	1	MPa,	which	is	about	ten	times	the



atmospheric	pressure.	For	example,	for	water,	κ	=	5	×	10−10	Pa−1,	and	for
mercury,	κ	=	0.4	×	10−10	Pa−1.

The	isothermal	compressibility	of	the	large	majority	of	solids	is	even	smaller.
For	example,	it	is	κ	=	0.6	×	10−11	Pa−1	for	iron,	and	κ	=	1.4	×	10−11	Pa−1	for
aluminum.

Let	us	now	consider	the	gases.	The	state	equation	can	be	written	as
V	=	nRT/p.	By	derivation,	we	obtain

	 (2.59)
At	atmospheric	pressure,	the	compressibility	of	a	gas	is	κ	=	10−5	Pa−1,	about

one	million	times	more	compressible	than	a	condensed	body	at	the	same
pressure.

Fig.	2.21 Specific	volume	of	water

Another	quantity	employed	to	characterize	the	thermal	properties	of	the
bodies	is	the	volumetric	thermal	expansion	coefficient	at	constant	pressure,
defined	by	the	relation

	 (2.60)
The	physical	dimensions	of	the	coefficient	are	the	reciprocal	of	temperature,

and	are	measured	in	K−1.	The	large	majority	of	substances	expand	when	heated,
hence	α	is	positive.	However,	there	are	exceptions,	that	is,	substances	that
expand	when	cooled.	Their	α	is	negative.	The	most	common	of	these	is	water
between	0	and	4	°C,	while	others	include	graphene,	some	complex	compounds,
some	iron	alloys,	etc.	Cubic	zirconium	tingstenate	(ZrW2O8)	has	a	negative
expansion	coefficient	in	the	largest	temperature	range,	namely	all	of	them	up	to



2.1

2.2

2.3

2.4

its	fusion.
Figure	2.21	shows	the	specific	volume	(which	is	the	inverse	of	the	density)

of	water	as	a	function	of	temperature	in	°C.	The	part	in	the	small	box	near	0	°C
in	part	(a)	of	the	figure	is	enlarged	in	part	(b).

We	again	fix	the	orders	of	magnitude.	The	thermal	expansion	coefficients	of
liquids	are	on	the	order	of	10−4–10−3	K−1;	for	example,	at	ambient	temperature,
it	is	α	=	2.1	×	10−4	K−1	for	water	and	α	=	1.1	×	10−3	K−1	for	alcohol.	The
coefficients	of	solids	are	smaller,	typically	by	one	order	of	magnitude.	For
example,	iron	has	α	=	3.5	×	10−5	K−1.	In	some	cases,	one	needs	to	build
structures	whose	dimensions	vary	as	little	as	possible	in	regard	to	temperature.
Special	alloys	have	been	developed	for	this	very	purpose.	For	example,	invar	,
an	iron-nickel	alloy,	has	α	=	3.6	×	10−6	K−1.

Let	us	now	compare	these	with	gases.	We	write	the	state	equation	as
V	=	nRT/p,	and	take	the	derivative	with	respect	to	temperature,	obtaining

	 (2.61)
Hence,	under	normal	conditions,	T	=	293	K,	and	a	gas	has	α	=	3.4	×	10−3	K

−1,	which	is	not	much	larger	than	for	some	liquids.

Problems

Let	us	introduce	into	a	calorimeter,	which	is	at	a	temperature	of	80	°C,	300	g
of	water	at	a	temperature	of	20	°C	(and	nothing	else).	We	observe	that
equilibrium	is	reached	when	the	water	temperature	is	60	°C.	Can	we	find	the
heat	capacity	of	the	calorimeter	from	these	data?

	
The	air	in	two	rooms	of	equal	volume	has	the	same	pressure.	If	the
temperatures	are	different,	which	room	contains	more	air?

	
If	we	know	the	pressure,	temperature	and	volume	of	a	gas,	which	of	the
following	quantities	can	be	known:	the	type	of	gas;	its	number	of	molecules;
its	number	of	atoms?

	
Find	the	number	n	p	of	molecules	per	unit	volume	of	air	at	standard
temperature	and	pressure.



2.5.

2.6

2.7

2.8

2.9

2.10

	
Find	the	mass	of	a	cubic	meter	of	air	at	STP.

	
The	air	composition	on	the	earth’s	surface	is	the	following:	N2	78.08	%,	O2
20.95	%,	Ar	0.93	%	and	other	gases	0.04	%.	Find	the	molar	mass	of	air.

	
Consider	the	following	processes	of	an	ideal	gas:	(a)	volume	increases	and
pressure	increases	proportionally;	(b)	volume	increases	and	pressure	is
constant;	(c)	the	gas	expands	isothermally;	(d)	the	gas	expands	adiabatically;
(e)	volume	increases	and	pressure	decreases	more	rapidly	than	in	an
adiabatic	process.	Qualitatively	draw	the	representative	curves	in	the	Vp
plane	and	state	the	behavior	of	internal	energy	in	each	case.

	
A	mixture	of	hydrogen	and	oxygen	gases	is	enclosed	in	a	container	with
rigid	and	adiabatic	walls.	We	fire	a	spark	(its	heat	release	is	negligible)	and
the	gases	violently	react,	resulting	in	an	increase	in	pressure	and
temperature.	How	much	does	the	internal	energy	vary?

	
Suppose	we	want	to	perform	the	Joule	experiment	on	the	equivalence
between	heat	and	work	with	a	calorimeter	containing	one	liter	of	water
(m	=	1	kg).	Each	of	the	two	weights	has	a	mass	M	=	10	kg	and	the	drop	is
h	=	2.5	m.	What	is	the	temperature	increase	to	be	measured?

	
The	heat	capacity	of	a	body,	in	the	considered	temperature	interval,
depends	on	temperature	according	to	the	expression	

.	How	much	heat	is	released	when	the
temperature	varies	from	T	1	=	400	K	to	T	2	=	300	K?

	



2.11

2.12

2.13

2.14

2.15

A	system	transforms	from	state	A	to	state	C	once	by	process	1,	once	by
process	2,	as	shown	Fig.	2.22.	Find	the	difference	Q	1	−	Q	2	between	the
exchanged	heats	(necessary	data	are	in	the	figure).

Fig.	2.22 The	two	processes	of	problem	2.11

	
A	certain	quantity	of	a	gas	passes	from	state	1	with	internal	energy	U
1	=	500	kJ	to	state	2	with	U	2	=	100	kJ,	doing	the	work	W	=	200	kJ.	How
much	is	the	absorbed	heat	Q	if	(a)	the	process	is	reversible,	or	(b)	the
process	is	irreversible?

	
A	certain	quantity	of	an	ideal	monoatomic	gas	is	compressed	adiabatically,
reversibly	changing	its	pressure	from	p	1	to	p	2	=	10	p	1.	After	that,	the	gas
is	compressed	back	to	its	initial	volume,	in	an	isothermal,	reversible
process,	to	the	pressure	p	3.	Find	p	3/p	1.

	
A	certain	quantity	of	an	ideal	monoatomic	gas	expands	in	a	reversible
process	at	constant	pressure	p	from	the	volume	V	1	to	V	2.	Find	the
expressions	for:	(a)	the	internal	energy	variation	ΔU,	(b)	the	work	done	by
the	gas	W	and	(c)	the	absorbed	heat	Q.

	
One	mole	of	an	ideal	gas	heats	from	T	1	=	273	K	to	T	2	=	373	K	in	a
reversible	constant	pressure	process,	absorbing	the	heat	Q	=	6.65	kJ.



2.16

1

Determine:	(a)	the	specific	heat	ratio	γ,	(b)	the	internal	energy	increase	ΔU
and	(c)	the	work	done	W.	(See	problem	2.14).

	
A	certain	quantity	of	an	ideal	gas	expands	at	constant	temperature	from	the
volume	V	1	=	1	m3	to	V	2	=	2	m3.	The	final	pressure	is	p	2	=	100	kPa.	Find:
(a)	the	internal	energy	increase	ΔU,	(b)	the	work	done	W	and	(c)	the
absorbed	heat	Q.

	

Footnotes
Notice	that	the	name	is	“kelvin”,	not	“degree	kelvin”	and	that	the	symbol	is	K,	not	°K.
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The	first	law	of	thermodynamics	is	the	law	of	energy	conservation.	The	second
law	has	a	very	different	nature;	it	establishes	the	rules	for	the	irreversibility	of
the	natural	processes.	If	we	bring	a	pendulum	out	of	its	equilibrium	position	and
let	it	go,	its	oscillations	are	ample	at	the	beginning,	but	gradually	decrease	in
their	amplitude	and	finally	stop	after	a	shorter	or	longer	period.	The	energy,
which	was	initially	mechanical	energy,	has	not	been	lost;	rather,	it	became
internal	energy	of	the	pendulum	and	of	the	surrounding	air.	The	first	law	does
not	forbid	the	inverse	process,	namely	having	a	pendulum	at	rest	starting
oscillations	of	increasing	amplitude,	while	its	temperature	and	that	of	the	air
decrease.	Similarly,	if	we	leave	a	pot	of	hot	coffee	on	a	table,	the	liquid	cools
down	in	time,	while	the	air	heats	up	(not	by	too	much,	obviously).	We	never
observe	coffee	at	room	temperature	heating	up	while	the	air	cools	down.	As	we
shall	see,	the	second	law	forbids	both	types	of	phenomenon.

As	we	already	mentioned,	the	second	law	was	discovered	before	the	first,	in
the	historic	period	during	which	engineers	were	developing	thermal	engines,
namely	devices	able	to	perform	mechanical	work	using	the	heat	produced	by
combustion.	In	this	case,	the	work	of	the	engineers,	theoretical	interpretations
included,	anticipated	that	of	the	physicists.

In	Sect.	3.1,	we	state	the	second	law.	Both	for	historical	and	didactic	reasons,
we	shall	give	two	statements,	one	attributed	to	Clausius,	one	to	Lord	Kelvin,	and
then	prove	their	equivalence.
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All	engines	operate	on	cyclic,	rather	than	open,	processes.	Indeed,	an	open
process	can	be	performed	only	once,	while	a	cyclic	process	can	continue
indefinitely.	The	simplest	cycle	compatible	with	the	second	law	exchanges	heat
with	two	sources.	This	is	called	the	Carnot	cycle,	and	we	shall	study	it	in	the
subsequent	three	sections,	together	with	the	fundamental	Carnot	theorem.

In	Sect.	3.5,	we	shall	introduce	the	concept	of	thermodynamic	temperature,
which,	as	we	anticipated,	allows	for	extending	the	scale	down	to	absolute	zero.

In	Sect.	3.6,	we	shall	demonstrate	the	fundamental	Clausius	theorem,	which
leads	to	the	definition	of	a	state	function,	entropy.	This	is	the	function	directly
connected	to	the	second	law,	just	as	energy	is	connected	to	the	first	one.	The
second	law	is	expressed,	in	its	most	precise	form,	as	the	law	of	increasing
entropy.	The	statement	is	that	the	entropy	of	a	thermally-isolated	system
increases	if	the	system	performs	spontaneous	processes;	it	stays	constant	if	the
system	is	in	an	equilibrium	state,	which	is	a	state	of	maximum	entropy.

In	Chap.	5,	we	shall	see	how	entropy	is	a	measurement	of	the	disorder	of	the
internal	structure	of	the	system.

3.1	 The	Second	Law	of	Thermodynamics
The	first	law	of	thermodynamics	states	that	the	total	energy	of	an	isolated	system
is	constant.	A	non-isolated	system	can	exchange	energy	as	work	or	heat,	the	two
forms	of	exchange	being	completely	equivalent.	For	the	first	law,	work	can	be
transformed	into	heat	and	heat	into	work	in	a	completely	symmetric	fashion.
However,	this	symmetry	is	not	present	in	nature.	The	second	law	quantitatively
establishes	how	this	happens.

As	a	matter	of	fact,	the	complete	transformation	of	work	into	heat	is	always
possible.	For	example,	we	can	hammer	a	piece	of	metal,	increasing	its
temperature	and	its	internal	energy,	and	then	take	it	back	to	its	initial
temperature,	extracting	heat.	We	have	completely	transformed	work	into	heat.
Contrastingly,	it	is	never	possible	to	build	a	cyclic	engine	able	to	extract	heat
from	a	body	and	transform	it	completely	into	work.	If	such	an	engine	were
possible,	we	would	have	at	our	disposal	practically	infinite	energy	sources,	given
the	enormous	internal	energy	of	the	oceans	and	of	the	ground.

We	observe	a	second	type	of	asymmetry	in	the	passage	of	heat	between	two
bodies	at	different	temperatures.	A	hot	water	pot	gradually	cools	down	until	its
temperature	is	equal	to	that	of	the	room	in	which	it	sits.	But	it	never	happens	that
water	at	room	temperature	heats	up,	taking	energy	from	the	cooler	environment,
even	if	the	process	would	not	violate	the	first	law.

The	second	law	of	thermodynamics	precisely	states	both	types	of



irreversibility.	We	shall	come	to	that	after	having	given	a	few	definitions.
A	thermal	reservoir	,	or	thermal	bath	or	heat	source,	at	temperature	T	is	a

thermodynamic	system	having	all	its	points	at	that	temperature,	able	to	exchange
heat	but	not	work	with	another	system	brought	into	thermal	contact.	In	addition,
the	heat	capacity	of	the	reservoir	is	large	enough	that,	in	all	the	thermal
exchanges	we	shall	consider,	its	temperature	remains	effectively	constant.	It	is
an	effectively	infinite	pool	of	thermal	energy	at	a	given,	constant	temperature.

Which	are	the	thermodynamic	coordinates	defining	the	state	of	a	reservoir?
At	first	sight,	one	might	think	that	its	thermodynamic	state	should	not	vary	when
we	extract	or	inject	a	certain	quantity	of	heat	Q,	because	its	temperature
effectively	remains	constant.	This	argument	is,	however,	wrong.	To	understand
the	point,	let	us	start	by	considering	a	source	of	very	large,	but	not	infinite,	heat
capacity.	The	heat	Q	will	produce	a	certain	change	of	temperature	ΔT.	If	m	is	the
mass	of	the	source	and	c	its	specific	heat	(hence	the	heat	capacity	is	mc),	it	is
Q	=	mcΔT.	The	reservoir	is	now	in	a	different	state,	even	if	one	near	to	its	initial
state.	In	particular,	its	internal	energy	has	increased	exactly	by	Q	because	there
was	no	external	work.	Let	us	now	increase	the	heat	capacity	to	the	infinite	(the
mass	of	the	reservoir),	keeping	Q	fixed.	The	temperature	variation	ΔT	goes	to
zero,	but	the	variation	of	internal	energy	remains	constant,	equal	to	Q.	The	two
states	remain	different.	In	conclusion,	the	thermodynamic	state	of	a	reservoir,	or
pool,	is	defined	by	a	sole	coordinate,	the	internal	energy	.

A	heat	engine,	or	simply	an	engine,	is	a	device	made	of	mechanical	parts
(like	pistons,	pulleys,	belts,	gears,	etc.)	and	a	vessel	containing	a	fluid	(such	as
the	water	vapor	in	a	steam	engine	or	the	gasoline	air	mixture	in	a	car	engine).	We
are	interested	in	the	fluid	,	its	thermodynamic	states	and	processes,	its	heat
exchanges	with	the	reservoirs	and	its	external	work.	Consequently,	we	can
ignore	the	details	of	the	mechanical	structures.	The	engine	must	operate
continuously.	Consequently,	it	must	come	back	to	its	initial	state	periodically.
The	processes	of	the	fluid	will	always	be	cycles.	We	shall	call	the	engines	that
produce	work	using	heat	(thermal)	motors	and	the	engines	that	transfer	heat	from
a	cooler	to	a	hotter	reservoir,	using	work,	refrigerators.

In	practice,	the	cycle	of	every	engine	is	always	an	irreversible	process.
However,	from	the	theoretical	point	of	view,	it	is	often	useful	to	consider
reversible	processes.	Notice	that,	independently	of	reversibility	or	not,	the
internal	energy	in	a	cycle	does	not	vary.	Consequently,	the	total	work	done	is
always	equal	to	the	total	absorbed	heat	(meaning	that	absorbed	less	that
released).	Going	forward,	when	we	talk	of	absorbed	heat	and	external	work
done,	we	shall	mean	exchanged	and	done	per	cycle.	Finally,	we	shall	adopt	the
usual	and	already-mentioned	convention	in	regard	to	the	signs;	the	heat	absorbed



by	the	engine	is	positive,	the	heat	released	is	negative;	the	work	done	is	positive,
the	work	received	is	negative.

We	shall	now	give	the	two	statements	of	the	second	law	and	then	prove	their
equivalence.	The	two	statements	have	been	given	by	Rudolf	Clausius	(Germany,
1822–1888)	and	William	Thomson,	Lord	Kelvin	(UK,	1824–1907)	In	Sect.	3.10,
we	shall	give	a	third	statement.

Clausius	statement	.	No	process	is	possible	whose	sole	result	is	the	transfer
of	heat	from	a	cooler	to	a	hotter	reservoir.

We	stress	the	importance	of	the	adjective	“sole”.	Refrigerators,	for	example,
transfer	heat	from	their	inside,	which	is	cooler,	to	the	outside	environment,
which	is	hotter.	But	they	also	absorb	work.	If	one	takes	the	plug	out,	they	do	not
work	any	more	(Fig.	3.1a).

Fig.	3.1 Cartoons	for	the	Clausius	and	Kelvin	statements	of	the	second	law

Kelvin	statement	.	No	process	is	possible	whose	sole	result	is	the	absorption
of	heat	from	a	reservoir	and	the	conversion	of	all	this	heat	into	work.

Once	more,	the	adjective	“sole”	is	important.	Consider,	for	example,	the
isothermal	expansion	of	an	ideal	gas.	The	internal	energy	does	not	vary,	because
it	is	a	function	of	the	temperature	alone.	Consequently,	all	the	absorbed	heat	is
converted	into	work.	But	this	is	not	the	sole	result;	indeed,	the	final	state	is
different	from	the	initial	one.	The	Kelvin	statement	refers	to	cyclic	processes
(Fig.	3.1b).

We	shall	now	prove	the	equivalence	of	the	two	statements.	We	shall	show
that	if	the	Kelvin	statement	was	false,	then	the	Clausius	statement	would	be	false
as	well,	and	reciprocally.

Assume	the	Kelvin	statement	to	be	false.	We	can	then	transform	all	the	heat,
Q,	taken	from	a	single	pool	at	temperature,	say	T	C	,	into	the	work	W,	as	shown
in	Fig.	3.2a.	For	the	first	law,	Q	=	W.	We	can	now,	without	violating	the	first	or
second	laws,	build	a	refrigerator,	namely	the	engine	in	Fig.	3.2b	that	employs	the
work	W,	absorbs	the	heat	Q	from	the	pool	at	T	C	,	and	delivers	the	heat	Q	H	to	a



reservoir	at	temperature	T	H		>	T	C	.	For	the	first	law,	Q	H		=	Q	+	Q	C	.	This	is
positive.	Hence,	we	have	a	process	for	which	the	sole	result	is	the	transfer	of
heat	from	a	cooler	to	a	hotter	body.	The	engine	composed	of	the	two	engines	is	a
refrigerator	working	without	external	work;	the	Clausius	statement	would	be
false.

Fig.	3.2 Cartoon	representation	of	the	first	part	of	the	equivalence	between	the	two	statements

We	shall	give	the	second	part	of	the	demonstration	of	the	equivalence
between	the	two	statements	after	having	discussed	the	simplest	process	available
for	transforming	absorbed	heat	into	work,	the	focus	of	the	next	section

3.2	 The	Simplest	Heat	Engine
For	the	Kelvin	statement,	there	is	no	cyclic	process	capable	of	transforming	the
heat	absorbed	from	a	single	reservoir	into	work.	The	simplest	possibility	is
consequently	a	cyclic	process	that	exchanges	heat	with	only	two	reservoirs,	at
different	temperatures.	Let	us	call	T	C	the	temperature	of	the	cooler	pool,	T	H	the
temperature	of	the	hotter	one	(T	H		>	T	C	).	The	following	arguments	are	valid	for
whatever	fluid	and	for	both	reversible	and	irreversible	cycles.	However,	to	be
concrete,	we	shall	consider	an	engine	operating	with	a	gas,	whose	state	can	be
represented	in	the	Vp	plane.	However,	our	argument	will	be	general;	in
particular,	we	shall	not	use	the	gas	equation.

Consider	a	gas	in	a	cylinder,	closed	off	by	a	piston.	The	lateral	walls	and	the
piston	are	adiabatic;	the	bottom	is	diathermic.	We	start	by	putting	the	cylinder	on
the	(hot)	reservoir	at	the	temperature	T	H	.	The	initial	state	is	the	point	A	in
Fig.	3.3	and	is	represented	in	Fig.	3.4,	labeled	with	the	same	letter.	We	let	the	gas
expand,	isothermally	reaching	state	B.	This	and	the	following	processes	are	not
necessarily	reversible.	When	the	gas	is	in	state	B,	we	move	the	cylinder	on	an



adiabatic	base.	We	perform	a	second	expansion,	now	adiabatically.	The
temperature	of	the	gas	decreases.	We	stop	the	expansion	when	the	temperature	is
at	T	C	(state	C).	We	now	move	the	cylinder	onto	the	(cold)	reservoir	at
temperature	T	C	and	compress	the	gas	until	we	reach	state	D,	which	is	on	the
same	adiabatic	curve	as	A.	Finally,	we	move	the	cylinder	on	the	adiabatic	base
and	compress	the	gas	adiabatically	until	we	reach	temperature	T	H	.	We	are	back
to	the	initial	state;	the	cycle	is	complete.

Fig.	3.3 The	simplest	cycle

Fig.	3.4 The	states	of	the	Carnot	cycle

In	the	isothermal	expansion,	the	gas	has	absorbed	the	heat	Q	H	from	the	hot
reservoir.	With	our	sign	convention,	it	is	positive.	In	the	isothermal	compression,
the	gas	releases	the	heat|Q	C	|.	With	the	sign	convention,	Q	C	is	negative.

The	total	absorbed	heat	is	 .	The	work	W	done	by	the	gas
is	positive,	because	the	cycle	is	clockwise.	For	this	reason,	the	reservoir	into
which	the	heat	is	released	must	be	the	cold	one.	For	the	first	law,	the	total
absorbed	heat	is	equal	to	the	work	done:



The	process	being	a	cycle,	there	is	obviously	no	variation	of	the	internal
energy.	We	see	that	only	a	portion	of	the	heat	absorbed	from	the	hot	reservoir	is
transformed	into	heat,	while	a	portion	is	delivered	to	the	cold	reservoir.

The	efficiency	of	an	engine	operating	between	two	reservoirs	is	defined	as
the	ratio	between	the	work	done	and	the	heat	absorbed	from	the	hot	reservoir:

	 (3.1)
The	efficiency	is	a	pure	number,	positive	and	less	than	one.	It	would	be	one,

namely	100	%,	only	if	it	were	possible	not	to	deliver	any	heat,	i.e.,	if	Q	C		=	0.
We	can	now	complete	the	demonstration	of	the	equivalence	of	the	two

statements.	We	now	assume	the	Clausius	statement	to	be	false.	We	can	then
transfer	a	certain	quantity	of	heat	Q	from	a	cold	reservoir	at	temperature	T	C	to	a
hotter	one	at	temperature	T	H	.	We	use	a	cycle,	respecting	the	first	and	second
laws,	that	absorbs	that	heat	Q	from	the	hot	reservoir	and	releases	a	portion	of	it
into	a	cold	reservoir.	The	cycle	does	positive	external	work.	The	sole	result	of
the	complete	process	is	the	transformation	into	work	of	heat	taken	from	a	unique
source	(which	is	in	this	case	the	cold	reservoir).	The	hot	source,	indeed,	absorbs
and	delivers	the	same	heat.	Its	internal	energy,	namely	its	state,	does	not	vary.	In
conclusion,	the	global	process	violates	the	Kelvin	statement	(Fig.	3.5).

Fig.	3.5 Cartoon	representation	of	the	second	part	of	the	equivalence	between	the	two	statements

3.3	 The	Carnot	Cycle
The	Carnot	cycle	is	a	cycle	that	exchanges	heat	with	only	two	reservoirs	when
all	its	processes	are	reversible.	It	is	named	after	Nicolas	Léonard	Sadi	Carnot
(France,	1796–1832),	whom	we	have	already	met	as	one	of	the	founders	of
thermodynamics.	The	fluid	in	the	cycle	can	be	of	any	type;	it	is	not	necessarily	a
gas.	In	this	section,	we	shall	express	the	efficiency	of	the	Carnot	cycle	for	an



ideal	gas	and,	in	the	next	section,	demonstrate	the	validity	of	the	found
expression	for	every	Carnot	cycle.

Figure	3.3	is	the	diagram	of	a	Carnot	cycle	for	an	ideal	gas	in	the	pV	plane
and	Fig.	3.4	shows	the	sequence	of	operations	necessary	to	perform	the	cycle.
The	four	processes	must	now	be	reversible.	In	practice,	we	reduce	the	friction
between	piston	and	cylinder	as	much	as	possible	and	move	the	piston	very
slowly;	all	the	intermediate	states	should	be	almost	equilibrium	states.	Under
these	conditions,	the	external	and	internal	pressures	are	always	equal	and,	in	the
isothermal	processes,	the	external	and	internal	temperatures	are	equal	too.	Notice
that	no	part	of	the	latter	condition	is	true	for	irreversible	processes.	The	pressure
and	temperature	of	the	gas	cannot	even	be	defined	in	this	case.	We	also	recall
that	heat	and	work	exchanged	in	a	reversible	process	are	equal	and	opposite	to
those	exchanged	in	the	inverse	process.

The	efficiency	of	the	Carnot	cycle	is	given	by	Eq.	(3.1),	which	we	can	write,
considering	that	Q	H		>	0	and	Q	C		<	0,	as

	 (3.2)
We	now	compute	the	heats	exchanged	in	the	isothermal	processes.	We	shall

consider,	for	simplicity,	one	mole	of	gas.	The	heat	Q	H	absorbed	on	the
isothermal	process	from	the	state	A	to	B	is,	for	the	first	law,

	 (3.3)
where	W	AB	is	the	work	done	in	the	process	and	U	A	and	U	B	are	the	internal
energies	in	the	two	states.	Considering	that	the	internal	energy	of	an	ideal	gas
depends	only	on	the	temperature,	 .	Hence,	the	absorbed	heat	is	equal	to
the	work	done,	which	is	given	by	Eq.	(2.14).	We	obtain

	 (3.4)
Similarly,	for	Q	C	,	we	have

Let	us	consider	the	signs.	W	AB	is	positive,	and	consequently	Q	H	is	absorbed
heat;	W	CD	is	negative,	and	consequently	Q	C	is	heat	delivered	by	the	cycle.	In
absolute	value,	we	have

	 (3.5)
We	now	take	into	account	the	fact	that	A	and	D	are	on	the	same	adiabatic



1.

2.

curve,	and	so	are	B	and	C.	We	use	the	adiabatic	equation	in	the	form	linking
temperatures	and	volumes.	We	have	 	and	 .

Dividing	these	two	equations,	we	obtain	 .	Finally,	raising

both	sides	to	the−γ	+	1	power,	we	obtain	 .	From	Eqs.	(3.4)	and
(3.5),	we	get

	 (3.6)
This	is	a	very	important	result.	In	other	words,	the	ratio	of	the	absolute

values	of	the	heat	exchanged	in	an	ideal	gas	Carnot	cycle	is	equal	to	the	ratio	of
the	absolute	temperatures	at	which	the	exchanges	take	place.	The	efficiency	is

	 (3.7)
In	conclusion,	the	efficiency	of	the	ideal	gas	Carnot	cycle	depends	only	on

the	temperatures	of	the	two	reservoirs	between	which	the	cycle	takes	place.	It
does	not	depend,	in	particular,	on	the	size	of	the	cycle,	i.e.,	on	the	work	done.

3.4	 The	Carnot	Theorem
We	shall	now	extend	the	results	of	the	previous	section	to	the	Carnot	engines
working	with	an	arbitrary	fluid.	This	is	the	Carnot	theorem	,	which	is	composed
of	the	following	two	statements:

The	efficiencies	of	all	Carnot	engines	exchanging	heat	between	the	same	two
reservoirs	are	equal,	namely	they	do	not	depend	on	the	fluid

	
The	efficiency	of	any	engine	exchanging	heat	with	only	two	reservoirs	cannot
be	larger	than	the	efficiency	of	the	Carnot	cycle	between	those	reservoirs.

	
Notice	that	“any	engine”	refers	to	both	reversible	and	irreversible	engines,

while	the	Carnot	engine	is	only	reversible.
We	demonstrate	2	first,	through	a	reduction	ad	absurdum,	and	then	1.	Let	us

call	E	the	generic	engine	and	C	the	Carnot	engine.	To	simplify	the	arguments,
assume	that	the	heats	absorbed	at	the	higher	temperature	by	the	two	engines	are



equal.	With	the	obvious	meaning	of	the	symbols,	the	efficiencies	η	of	C	and	η′	of
E	are

	 (3.8)

Let	us	assume	η′	>	η	(to	reduce	it	ad	absurdum).	It	follows	that

	 (3.9)
The	Carnot	engine	being	reversible,	we	are	free	to	have	it	working

backwards,	namely	as	a	refrigerator.	The	heats	and	the	work	simply	change	their
signs.	The	Carnot	engine	now	needs	to	absorb	the	work	W.	For	that,	we	use	part
of	the	work	W′	>	W	produced	by	E.	The	complex	of	engine	E	and	backwards	C
is	still	a	cyclic	engine.	It	produces	the	external	work	W′	−	W	>	0,	taking	heat
from	only	one	reservoir,	the	one	at	temperature	T	C	.	Indeed,	at	every	cycle,	the
hot	reservoir	receives	the	same	energy	from	the	two	engines	that	it	releases.
Consequently,	everything	goes	on	as	if	it	did	not	exist.	Indeed,	we	might	also
think	to	pass	the	heat	from	one	machine	to	the	other	directly	(Fig.	3.6).	This
conclusion	does	not	agree	with	the	Kelvin	statement.	This	demonstrates	point	2.
Let	us	now	demonstrate	the	same	for	point	1.

Fig.	3.6 Two	engines	working	between	the	same	two	reservoirs,	a	generic	one	E	and	a	Carnot	one	C
(working	as	a	refrigerator)

If	the	cycle	E	is	reversible	as	well,	the	above	argument	can	be	inverted,
showing	that	the	assumption	η′	<	η	is	also	false.	It	must	then	be	η′	=	η.

In	conclusion,	we	have	shown	that	the	efficiencies	of	all	the	Carnot	cycles
between	the	same	two	temperatures	are	equal.	The	efficiency	Eq.	(3.7)	that	we
found	for	the	ideal	gas	is	valid	for	all	the	Carnot	cycles,	with	whatever
substance.	We	have	also	shown	that	the	efficiencies	of	all	the	irreversible	cycles
between	two	reservoirs	are	less	than	or	equal	to	the	efficiency	of	the	Carnot
cycle	between	the	same	temperatures.

Therefore,	the	Carnot	theorem	establishes	the	upper	limit	for	the	efficiency
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of	the	thermal	engines	operating	between	two	given	temperatures.	As	one	sees	in
Eq.	(3.7),	the	closer	the	limit	efficiency	is	to	one,	or	100	%,	the	smaller	the	ratio
between	the	lower	and	higher	temperatures.	Very	often,	the	lower	temperature	is
the	air	temperature	or,	in	the	case	of	ships,	the	seawater.	Consequently,	T	C	is	not
usually	under	our	control.	We	might	play	with	T	H	.	To	have	an	idea	of	the	orders
of	magnitude,	take,	in	round	figures,	T	C		=	300	K	(27	°C).	The	maximum
theoretical	efficiency	is,	for	example,	50	%	for	T	H		=	660	K	(327	°C)	and	70	%
for	T	H		=	960	K	(627	°C).	For	this	reason,	thermal	power	stations	operate	close
to	the	maximum	practical	steam	temperature,	which	is	about	600	°C.	Their
efficiency	is	35–40	%,	namely	50–60	%	of	the	theoretical	maximum.

In	practice,	the	efficiency	of	any	real	engine	is	always	less	than,	never	equal
to,	the	efficiency	of	the	Carnot	cycle	between	the	same	temperatures.	The
reasons	for	that	are	threefold.	To	fix	the	ideas,	think	of	a	piston	moving	up	and
down	in	a	cylinder	containing	a	fluid	(this	happens,	for	example,	in	our	car
engines).

Part	of	the	work	is	lost	against	frictions	that	are	always	present.

	
In	the	heat	exchange	at	the	higher	temperature,	the	mean	temperature	of	the
fluid	is	less	than	the	temperature	of	the	reservoir,	 .	We	have	used	the
term	“mean	temperature”	because	the	states	are	not	of	equilibrium.	The
opposite	is	true	for	the	exchange	at	the	lower	temperature,	where	 .

	
The	external	pressure	is	less	than	the	internal	one	during	the	expansions,	and
consequently	the	(positive)	work	done	is	smaller	than	that	in	the	reversible
case.	During	the	compressions,	the	external	pressure	is	smaller	than	the
internal.	The	work	done	is	larger	in	absolute	value	than	that	in	the	reversible
case,	and	is	negative.	Both	effects	reduce	the	total	work.

	
In	general,	a	thermal	engine	can	exchange	heat	with	several	sources	at

different	temperatures.	The	efficiency	of	a	cycle	is	still	defined	as	the	ratio
between	the	work	done	W	and	the	absorbed	heat.	The	total	work	W	is	the
algebraic	sum	of	the	works	relative	to	all	the	processes	composing	the	cycle



taken	as	positive	if	done,	negative	if	received.	Let	Q	in	be	the	sum	of	all	the
absorbed	heats	and	Q	out	the	sum	of	all	the	delivered	heats.	As	usual,	Q	in	is
positive	and	Q	out	is	negative.	The	efficiency	is	defined	as

	 (3.10)
Let	T	H	be	the	highest	temperature	and	T	C	the	lowest.	We	shall	show	in	Sect.

3.8	that	the	efficiency	of	an	engine	exchanging	heat	with	more	than	two
reservoirs	cannot	be	larger	than	the	efficiency	of	a	Carnot	cycle	working
between	the	extreme	temperatures.	We	give	an	example	below.

Example	E	3.1
Figure	3.7	shows	the	Stirling	cycle	,	which	is	a	reversible	cycle	made	of	two
isothermal	transformations,	at	T	H	and	T	C	,	respectively,	and	two	isochoric
transformations,	made	by	an	ideal	gas	(n	moles).	It	is	named	after	Robert	Stirling
(UK,	1790–1878).	The	cycle	absorbs	heat	in	the	isochoric	process	DA	(at
temperatures	gradually	growing	from	T	C	to	T	H	)	and	in	the	isothermal
expansion	AB	(at	T	H	).	It	releases	heat	in	the	isochoric	transformation	BC	and	in
the	isothermal	compression	CD.

Fig.	3.7 The	Stirling	cycle

The	heats	exchanged	in	the	isothermal	processes	are	 ,	which
is	positive,	and	 ,	which	is	negative.	The	heats	exchanged	in
the	isochoric	processes,	in	which	the	works	are	zero,	are	equal	to	the	variations
of	internal	energy.	Clearly,	one	is	the	opposite	of	the	other.	Assuming	the	molar
heat	to	be	constant,	they	are	 .	The	efficiency	of	the
Stirling	engine	is	then



This	is	smaller	than	the	efficiency	of	the	Carnot	cycle	between	the	same
temperatures,	which	is

because	Q	DA		>	0.	∎
A	thermal	cycle	can	be	used	as	a	refrigerator	,	to	move	heat	from	lower	to

higher	temperatures,	rather	than	as	a	motor.	From	the	theoretical	point	of	view,
this	is	just	a	motor	working	backwards.	The	cycle	in	this	case	absorbs	work.	The
efficiency	of	a	refrigerator	is	defined	as	the	ratio	between	the	heat	absorbed	from
the	low	temperature	reservoir	and	the	work	spent	to	do	that,

	 (3.11)
which,	we	note,	is	always	larger	than	one.	If	the	cycle	is	a	Carnot	cycle,	we
can	also	write

	 (3.12)

3.5	 Thermodynamic	Temperature
Let	us	start	from	the	conclusion	of	the	preceding	section	that	the	efficiency	of
any	thermal	engine	working	between	two	temperatures	cannot	be	larger	than	the
efficiency	of	the	Carnot	engine	between	those	temperatures.	We	can	write

or

and	also

	 (3.13)
In	other	words,	the	sum	of	the	ratios	of	the	exchanged	heats	over	the

temperatures	of	the	exchange	is	less	than	or	equal	to	zero.	It	is	equal	to	zero	if
the	cycle	is	reversible,	namely	for	the	Carnot	cycle	.

Equation	(3.13)	is	an	important	relation	that	we	shall	use	in	the	following.
Here,	we	use	it	for	a	new	definition	of	the	absolute	temperature.	Considering	a



reversible	cycle,	Eq	(3.13)	gives

	 (3.14)
where	the	meaning	of	the	minus	sign	is	that	the	two	heats	have	opposite
signs	(one	is	absorbed,	the	other	is	released).

We	want	to	measure	the	temperature	T	of	a	body.	We	have	a	reservoir	at	the
reference	temperature	of	the	water	triple	point	T	tr		=	273.16	K.	We	build	a
Carnot	engine,	as	in	Fig.	3.8,	working	between	the	body	at	the	temperature	to	be
measured,	used	as	the	cold	source,	and	the	hot	source	at	T	tr	.	We	measure	the
heats	absorbed	by	the	cycle,	say	Q	=	Q	C	and	Q	tr		=	Q	H	.

Fig.	3.8 Scheme	to	define	the	thermodynamic	temperature

We	now	define	the	temperature	of	the	body	as

	 (3.15)
where,	as	you	may	notice,	the	two	heats	have	opposite	signs.	The	so-defined
temperature	is	called	the	absolute	thermodynamic	temperature	.	It	coincides	with
the	ideal	gas	temperature	that	we	defined	in	Sect.	2.2	in	the	interval	where	both
definitions	are	meaningful,	but	it	is	also	valid	at	the	lowest	temperatures,	where
the	gas	temperature	does	not	work	(below	about	1	K).

The	thermodynamic	definition	does	not	require	measuring	temperatures.	We
can	measure	only	heats.	For	example,	we	can	use	a	melting	ice	calorimeter	to
measure	Q.	In	such	a	calorimeter,	the	heat	is	measured	by	measuring	the	mass	of
ice	that	melts.	Similarly,	we	can	measure	how	much	ice	melts	at	T	tr	.	In	both
cases,	we	weigh	using	balances,	not	thermometers.	However,	building	a
reversible	engine	is	impossible.	We	must	try	to	reduce	the	frictions	as	much	as



possible	and	apply	to	the	measurements	the	corrections	needed	to	eliminate	the
effects	of	the	remaining	ones.

3.6	 The	Clausius	Theorem
We	shall	now	demonstrate	the	Clausius	theorem	,	which	has	a	central	importance
in	thermodynamics.	We	start	from	Eq.	(3.13),	valid	for	a	cycle	working	between
two	sources,	and	we	generalize	the	result	to	any	number	of	reservoirs.

Consider	a	thermal	engine,	which	we	call	M.	To	be	concrete,	we	consider	a
motor,	meaning	that	its	W	is	positive.	The	cycle	is	completely	general:	it	may	be
reversible	or	not,	and	it	may	exchange	heat	with	any	number	of	sources.	If	this
number	is	infinite,	we	can	approximate	the	system	with	a	finite	number	of
sources	N,	provided	N	is	large	enough.

Let	T	i	be	the	temperature	of	the	generic	reservoir	and	Q	i	the	heat	absorbed
from	it	by	the	cycle.	With	the	usual	sign	convention,	Q	i	is	positive	if	absorbed
by	the	engine,	negative	if	released.	Notice	that	T	i	is	the	temperature	of	the
source.	This	is	equal	to	the	temperature	of	the	fluid	only	if	the	process	is
reversible.	Otherwise,	the	temperature	of	the	fluid	might	not	even	be	defined,
because	the	fluid	is	not	in	an	equilibrium	state.

We	are	going	to	show	that	the	sum	of	the	ratios	between	absorbed	heats	and
temperatures	of	the	exchanges	is	equal	to	or	smaller	than	zero.	We	imagine	the
“super-engine”,	shown	in	Fig.	3.9.	Beyond	the	engine	M,	we	have	an	additional
reservoir	at	the	temperature	T	0	and	Carnot	cycles	N.	The	ith	Carnot	cycle	C	i
works	between	the	source	at	T	0	and	the	source	at	T	i	,	to	which	it	delivers	the
same	heat,	Q	i	(meaning	that	it	absorbs—Q	i	)	that	is	absorbed	by	M.	Let	Q	i0	be
the	heat	absorbed	by	C	i	at	T	0.	Consider	now	the	super-engine	made	of	M	and	all
the	C	i	s.	At	every	cycle,	all	the	engines	are	back	to	their	initial	state,	and	all	the
sources	at	T	i	have	received	and	delivered	the	same	heat,	so	that	they	are	in	their
initial	state	as	well.	The	only	component	of	the	system	that	has	changed	is	the
source	at	T	0.



Fig.	3.9 The	“super-engine”	for	the	Clausius	theorem

The	work	done	by	the	super-engine	is	the	sum	of	the	works	of	M	(positive)
and	of	all	the	C	i	(some	positive,	some	negative).	Considering	that	the	super-
engine	performs	cycles	too,	the	work	it	does	is	equal	to	the	sum	of	the	absorbed
heats.	As	we	have	just	seen,	all	the	exchanges	take	place	with	a	unique	source,
the	reservoir	at	T	0.	It	cannot	be	positive,	for	the	Kelvin	statement.

	 (3.16)

On	the	other	hand,	each	C	i	is,	by	construction,	a	Carnot	cycle;	hence,	it	is
reversible.	As	we	showed,	it	absorbs	heat	−Q	i	from	the	source	at	T	i	and	Q	i0
from	the	source	at	T	0.	Equation	(3.13)	holds	with	the	equal	sign,	namely

or

Substituting	in	Eq.	(3.15),	we	get

Finally,	taking	into	account	that	T	0	>	0,	we	have	the	desired	result



	 (3.17)

We	can	tell	more	if	the	engine	M	is	reversible.	In	this	case,	the	super-engine
is	reversible	too,	and	we	can	have	it	working	backwards.	The	work	done	is
exactly	the	opposite,	−W	(the	engine	absorbs	work),	and	all	the	absorbed	heats
are	opposite	too,	namely	−Q	i	.	All	the	C	i	s	are	now	working	backward	and
absorb	the	heats	−Q	i0	from	the	source	at	T	0.	We	conclude	that

Both	this	relation	and	Eq.	(3.17)	hold	for	a	reversible	engine.	We	conclude
that,	for	such	an	engine,

	 (3.18)

If	the	engine	absorbs	heat	from	an	infinite	number	of	sources,	each	exchange
is	infinitesimal,	and	Eqs.	(3.17)	and	(3.18)	become,	for	an	arbitrary	cycle,

	 (3.19)
and,	for	a	reversible	cycle,

	 (3.20)
In	other	words,	the	Clausius	theorem	states	that	the	sum	of	the	ratios	of	the

heats	absorbed	by	a	cyclic	engine	and	the	absolute	temperatures	of	the	sources
from	which	the	heats	are	absorbed	is	less	than	or	equal	to	zero.	The	equality
holds	if	the	cycle	is	reversible;	the	R	footer	in	Eq.	(3.20)	stands	to	recall	that	it
applies	to	a	reversible	cycle	only.

3.7	 Entropy
As	we	have	remarked	several	times,	the	infinitesimal	heat	exchange	δQ	is	not	an
exact	differential,	independent	of	the	process	being	reversible	or	not.
Equation	(3.20)	implies,	however,	that,	for	a	reversible	process,	δQ	divided	by
the	temperature	T,	say	(δQ/T)	R	,	is	an	exact	differential	.	Notice	that	we	have	not
currently	specified	that	T	is	the	temperature	of	the	source,	because,	the	process
being	reversible,	the	temperatures	of	the	engine	and	the	source	are	equal.	We	can
express	the	conclusion	in	other	words;	given	two	equilibrium	states	A	and	B	of



any	thermodynamic	system,	the	integrals	of	(δQ/T)	R	in	all	the	reversible
processes	between	them	are	equal.	We	can	also	say	that	the	integral	of	(δQ/T)	R
in	a	reversible	process	depends	on	both	the	origin	and	the	end	of	the	process,	but
not	on	the	process	itself	that	occurs	between	them.	The	demonstration	proceeds
exactly	as	in	other	similar	cases.	We	shall	give	it	here	anyway,	to	be	complete.

Consider,	as	shown	in	Fig.	3.10,	two	reversible	processes,	1	and	2,	between
the	equilibrium	states	A	and	B.	The	sum	of	process	1	and	the	inverse	of	process	2
are	a	reversible	cycle.	Hence,

or

Fig.	3.10 Two	reversible	processes	from	A	to	B

Process	2	being	reversible,	we	can	invert	the	limit	and	we	get

Finally,	we	have

	 (3.21)

The	integral	from	A	to	B	in	a	reversible	process	can	then	be	written	as	the
difference	of	the	values	in	B	and	A	of	a	state	function	,	which	we	call	entropy
and	indicate	with	S,	namely



	 (3.22)

This	is	the	definition	of	entropy,	or,	better	still,	of	entropy	differences.	As	the
internal	energy,	the	entropy	is	defined	modulo	and	additive	constant.	The	units
of	entropy	are	heat	divided	by	temperature,	namely	J/K.

For	the	vast	majority	of	thermodynamic	systems,	entropy	is	an	additive
quantity.	Consider,	for	example,	a	thermodynamic	system	s	composed	of	two
subsystems	s	1	and	s	2.	Suppose	the	internal	energy	of	s	to	be	the	sum	of	the
internal	energies	of	subsystems	s	1	and	s	2.	This	is	usually,	but	not	always,	the
case.	It	is	not	so	in	the	presence	of	energy	associated	with	surfaces.	Consider,	for
example,	two	drops	of	water.	The	internal	energy	of	a	drop	is	the	sum	of	two
terms,	one	proportional	to	the	volume	and	one	proportional	to	the	surface.	The
latter	is	due	to	the	surface	tension,	as	we	shall	see	in	Sect.	4.9.	We	anticipate	that
the	surface	tension	corresponds	to	the	work	that	is	needed	to	move	a	molecule
from	the	bulk	of	the	drop	to	its	surface.	If	we	put	the	two	drops	together,	a	larger
drop	forms;	its	volume	is	the	sum	of	the	two	volumes,	but	its	surface	is	smaller
than	the	sum	of	the	two	surfaces.	The	internal	energy	of	the	composite	system	is
not	the	sum	of	the	internal	energies	of	its	components.	In	the	majority	of
systems,	however,	the	dimensions	are	large	and	the	surface	energy	can	be
neglected	in	comparison	with	that	of	the	volume.	For	them,	the	internal	energy
of	the	system	is	the	sum	of	the	internal	energies	of	its	parts.

We	now	suppose,	as	is	often	the	case,	that	the	work	done	on	the	system	is
equal	to	the	sum	of	the	works	done	on	its	parts.	Then,	for	the	first	law,	the	heat
absorbed	by	the	system	is	also	equal	to	the	sum	of	the	heats	absorbed	by	its
parts.	In	addition,	in	the	reversible	processes	we	are	considering,	the
temperatures	of	all	the	parts	are	equal.	The	entropy	is	additive	for	the	systems
having	these	characteristics.

Equation	(3.22)	should	be	used	whenever	we	want	to	calculate	the	entropy
difference	between	two	given	equilibrium	states	A	and	B	of	a	thermodynamic
system.	In	general,	one	deals	with	a	system	performing	a	given	process	from	A
to	B	and	is	needed	to	find	the	corresponding	entropy	variation.	The	reader	should
be	very	careful	not	to	be	deceived	by	the	words	“corresponding	variation”	or
similar	terms.	Indeed,	the	entropy	variation	corresponds	to	the	fact	that	the
system	was	initially	in	equilibrium	state	A	and,	after	the	process,	is	in
equilibrium	state	B.	It	does	NOT	“correspond”,	in	general,	to	the	process
actually	performed.	If,	for	example,	the	system	performed	a	spontaneous
process,	which	is	irreversible,	the	integral	of	δQ/T,	called	the	Clausius	integral	,



1.

2.

3.

in	that	process	has	nothing	to	do	with	the	“corresponding”	entropy	variation.	We
shall	see	that	immediately	through	a	few	examples.

The	correct	procedure	for	calculating	entropy	differences	is	as	follows:

Fix	your	attention	on	the	initial	and	final	states	only,	forgetting	the	process
performed	by	the	system.

	
Consider	all	the	reversible	processes	between	the	two	states	and	choose	the
one	that	makes	calculation	easiest.

	
Do	the	calculation.

	
We	shall	now	give	a	few	examples.

Fig.	3.11 Free	expansion	of	a	gas.	Initial	and	final	states

Example	E	3.2
Free	expansion	of	a	gas.	A	container	of	volume	V	t	with	rigid	walls	is	divided
into	two	parts	by	a	septum.	Initially,	one	of	the	parts,	of	volume	V	i	,	is	filled
with	n	moles	of	a	gas,	which	can	be	considered	to	be	ideal,	at	the	temperature	T;
the	other	part	is	empty	(Fig.	3.11).	We	open	an	orifice	in	the	septum	and	the	gas
expands	to	occupy	the	entire	container.	Calculate	the	corresponding	variation	of
entropy.

If	one	falls	into	the	trap	and	calculates	the	Clausius	integral	of	δQ/T	in	the	actual
process,	considering	that	there	is	no	heat	exchange,	he/she	finds



1.

2.

3.

	 (3.23)

and	claims	that	entropy	does	not	vary.	This	is	wrong.	The	Clausius	integral	is	not
the	entropy	variation	because	it	is	in	an	irreversible	process.	To	calculate	the
entropy	variation,	we	take	the	above-specified	steps.

The	initial	state	is	A	=	(p	i	,	V	i	,	T).	We	know	the	volume	and	temperature,
and	we	can	calculate	the	pressure	with	the	gas	equation,	if	we	need	it.	The
final	state	is	B	=	(p	f	,	V	t	,	T);	we	know	this	volume	and	temperature	too,	and
we	can	again	calculate	the	pressure	if	needed.

	
Considering	that	the	two	states	have	the	same	temperature,	it	is	clearly
convenient	to	take,	for	the	calculation,	the	reversible	isotherm	process
between	them.

	
As	the	internal	energy	does	not	vary	in	an	isothermal	process	of	an	ideal	gas,
the	absorbed	heat	is	equal	to	the	work	done	 .
Hence,	 .	Finally,	integrating,	we	have

	

	 (3.24)

We	see,	in	particular,	that	entropy	increases	during	the	process.	This	is	the
case	for	all	spontaneous	processes	of	isolated	systems,	as	we	shall	see
(Fig.	3.12).	∎



Fig.	3.12 A	free	expansion	and	isothermal	processes	between	two	equilibrium	states	of	a	gas

Example	E	3.3
Spontaneous	heat	transfers	from	a	hotter	to	a	colder	body.	Consider	two	solid
bodies,	of	masses	m	1	and	m	2,	specific	heats	c	1	and	c	2,	and	temperatures	T	1
and	T	2,	with	T	1	<	T	2.	We	lodge	the	two	bodies	in	a	thermally	insulated
container	and	put	them	in	thermal	contact.	Heat	passes	from	the	hotter	to	the
colder	body	until	the	two	temperatures	are	equal.	The	equilibrium	temperature	T
f	can	be	easily	calculated.

We	calculate	the	entropy	variation	following	the	rules.	We	first	notice	that	the
system	consists	of	two	parts.	Its	entropy	is	the	sum	of	the	entropies	of	its	parts.
The	state	of	each	part	is	identified	by	the	only	thermodynamic	variable	of	a
solid,	namely	temperature.	Indeed,	we	can	consider	the	volume	of	a	solid	as
invariable.	Body	1	passes	from	T	1	and	T	f	.	We	need	a	reversible	transformation
between	the	two	states.	We	can	think	to	put	the	body	into	contact	with	a	series	of
sources	having	temperatures	between	T	1	and	T	f	.	When	the	body	(that	we	are
heating)	has	reached	the	generic	temperature	T,	we	put	it	into	contact	with	the
source	of	temperature	T	+	dT.	The	body	then	reversibly	absorbs	the	heat	δQ	=	m
1	c	1	dT	from	the	source.	The	entropy	variation	of	the	body	is	then

and,	analogously,	the	entropy	variation	of	the	second	is

The	total	entropy	variation	is,	in	conclusion,



	 (3.25)
We	can	make	a	couple	of	observations.	First,	notice	that	if	we	had	calculated

the	entropy	variation	as	the	integral	of	δQ/T	in	the	actual	process,	we	would	have
followed	a	faulty	procedure,	because	that	process	is	not	reversible.	However,	the
result	would	have	been	the	correct	one.	This	is	a	more	of	a	unique	than	a	rare
case.	The	second	observation	is	that	the	process	is	spontaneous	and	the	variation
of	entropy	is	positive,	as	in	E.	3.2.	∎

Example	E	3.4
Consider	a	pendulum	enclosed	in	an	adiabatic	container	with	air	at	atmospheric
pressure.	In	the	initial	state,	the	pendulum	is	moved	out	of	its	mechanical
equilibrium	position	and	is	let	go	(Fig.	3.13a).	The	temperatures	of	the	pendulum
and	the	air	are	both	T	i	.	The	pendulum	will	oscillate	for	a	while,	with
oscillations	of	decreasing	amplitude,	due	to	the	resistance	of	the	air.	Consider	as
the	final	state	Fig.	3.13b,	the	state	in	which	the	pendulum	is	at	rest	and	its
temperature	and	that	of	the	air	are	equal.	The	final	temperature,	T	f	,	is	obviously
larger	than	T	i	.

Fig.	3.13 A	pendulum	in	an	adiabatic	container.	a	Initial	state;	b	final	state

The	thermodynamic	system	is	composed	of	two	subsystems:	a	gas,	which	we
shall	consider	as	ideal,	and	a	solid.	The	entropy	variation	of	the	system	is	the
sum	of	the	entropy	variations	of	its	parts.	Let	m	be	the	mass	and	c	the	specific
heat	of	the	pendulum.	Its	initial	and	final	states	are	identified	by	their
temperatures.	Indeed,	the	initial	motion	is	thermodynamically	irrelevant.	Let	n
be	the	number	of	moles	of	the	air	and	C	V	its	molar	heat.	The	initial	and	final
states	of	the	air	are	identified	by	their	pressures,	volumes	and	temperatures.	As
the	initial	and	final	states	have	the	same	volume,	we	choose	a	reversible
isochoric	process,	in	which	 .	Hence,



where	we	have	considered	C	V	to	be	constant.
The	entropy	variation	of	the	pendulum	is	what	we	just	calculated	for	a	solid

body:

In	conclusion,	the	entropy	variation	of	the	system	is

	 (3.26)
Once	more,	we	see	that,	in	a	spontaneous	process,	the	entropy	variation	is

positive,	being	T	f		>	T	i	.	∎

3.8	 Engines	Exchanging	Heat	with	More	Than	Two
Sources
We	already	mentioned	in	Sect.	3.4	that	the	efficiency	η	of	an	engine,	reversible
or	not,	which	exchanges	heat	with	more	than	two	sources	having	temperatures
between	a	minimum	T	C	and	a	maximum	T	H	,	is	smaller	than	the	efficiency	η	C
of	a	Carnot	engine	working	between	T	C	and	T	H	.	We	now	demonstrate	that
statement,	using	the	Carnot	theorem	.

Let	us	first	consider	a	reversible	cycle.	In	that	case,	Eq.	(3.20)	holds.	Now,
let	us	explicitly	consider	the	contribution	of	the	absorbed	heats,	namely	the
positive	ones,	which	we	shall	call	δQ	in	,	and	the	released	ones	(negative),	δQ	out
,	and	write

	 (3.27)
We	wrote	the	left-hand	side	as	a	difference	between	two	positive	terms.

Considering	that	T	H	is	the	highest	temperature,	we	can	state	that

and,	similarly,



Then,	for	Eq.	(3.27)	it	must	be

or

and	finally

	 (3.28)
that	proves	the	statement.

If	the	cycle	is	irreversible,	Eq.	(3.19)	holds	in	place	of	Eq.	(3.20)	and	the
same	arguments	are	valid	a	fortiori.

3.9	 Entropy	of	Remarkable	Systems
In	this	section,	we	shall	express	the	entropy	variations	of	some	remarkable
systems.	The	infinitesimal	heat	absorbed	in	a	generic	reversible	process	is

and	the	infinitesimal	entropy	variation	is

	 (3.29)
The	entropy	difference	between	two	equilibrium	states	A	and	B	is

	 (3.30)

Solid	body	.	We	have	already	found	this	expression	in	the	previous	section.
We	repeat	it	here	for	completeness.	If	m	is	the	mass,	c	is	the	specific	heat	and	T	A
and	T	B	the	initial	and	final	temperatures,	the	entropy	variation	is

	 (3.31)
Ideal	gas	.	Let	T	A	and	T	B	be	the	initial	and	final	temperatures,	and	V	A	and	V

B	the	initial	and	final	volumes.	We	have	 	and	 .	Hence,
for	Eq.	(3.30),



	 (3.32)
Reservoir	.	A	reservoir	is	an	ideal	heat	source	with	infinite	heat	capacity.

Whatever	heat	it	absorbs	or	delivers,	its	temperature	does	not	vary,	however,	its
internal	energy	does	vary,	and	its	state	as	well.	As	we	know,	the	only
thermodynamic	coordinate	of	a	reservoir	is	its	internal	energy.	The	initial	and
final	states,	A	and	B,	are	identified	by	the	internal	energies	U(A)	and	U(B).	We
consider	a	reversible	transformation	in	which	the	reservoir	absorbs	infinitesimal
heat	quantities	δQ,	such	that	their	integral	is	equal	to	the	total	absorbed	heat
Q	=	U(B)	−	U(A).	All	these	heats	are	exchanged	at	the	same	temperature.	The
entropy	change	is	then	simply

	 (3.33)
Isentropic	processes	.	Any	reversible	adiabatic	process	is	a	process	at

constant	entropy,	and	is	said	to	be	an	isentropic	(meaning	at	equal	entropy)
process.	Indeed,	in	such	a	reversible	process,	all	the	heat	exchanges	are	zero	and
so	are,	consequently,	all	the	δQ/T	and	their	integral	between	the	initial	and	the
final	state.	We	here	repeat	that	entropy	is	not	constant,	but	rather	increases,	in	an
irreversible	adiabatic	process.

Consider	now	a	hydrostatic	system	of	a	given	mass.	As	we	know,	two
thermodynamic	coordinates	are	necessary	and	sufficient	to	define	its	equilibrium
states.	The	choice	of	the	couple	of	coordinates	in	a	given	problem	should	be
done	according	to	convenience.	As	a	matter	of	fact,	we	can	use	not	only
pressure,	temperature	and	volume,	but	also	any	state	function	(as	we	did	for	the
reservoir).	An	often-useful	choice	is	the	entropy,	temperature	pair.	The	processes
are	represented	in	the	TS	plane,	as	shown	in	Fig.	3.14.

Fig.	3.14 Diagrams	in	the	TS	plane.	a	A	reversible	process,	b	a	Carnot	cycle

Figure	3.14a	shows	a	reversible	process	from	A	to	B.	The	area	under	the
curve,	grey	in	the	figure,	has	the	physical	meaning	of	absorbed	heat	Q.	Indeed,



the	area	is	the	integral

	 (3.34)

This	is	positive	(absorbed)	in	the	example.	It	would	have	been	negative
(released)	if	the	process	was	in	the	opposite	direction.

The	TS	diagram	of	the	Carnot	cycle	is	particularly	simple.	Being	composed
of	two	isothermal	and	two	isentropic	processes,	it	is	just	a	rectangle,	as	in
Fig.	3.14b.

In	general,	for	whatever	cycle,	the	area	enclosed	in	the	TS	diagram	represents
the	absorbed	heat	and	consequently	also	the	work	done.

In	Sect.	3.8,	we	showed	that	the	efficiency	η	of	any	engine	that	exchanges
heat	with	more	than	two	sources	between	a	minimum	T	C	and	a	maximum	T	H	is
smaller	than	the	efficiency	η	C	of	a	Carnot	engine	working	between	T	C	and	T	H	.
The	demonstration	is	extremely	simple	on	the	TS	plane.	Consider	a	reversible
cycle,	which	is	represented	by	the	closed	curve	in	Fig.	3.15.	The	rectangle	is	the
Carnot	cycle	between	the	extreme	temperatures.	We	have	profited	from	the	fact
that	the	efficiency	of	the	Carnot	cycle	does	not	depend	on	the	“length”	of	the
isothermal	transformations,	but	only	on	their	temperatures,	to	draw	the	Carnot
cycle	tangent	to	the	generic	one.	The	heat	input	(which	is	positive)	in	the	generic
cycle	Q	G,in	takes	place	on	the	segment	ABC;	the	heat	input	in	the	Carnot	cycle
Q	C,in	is	on	the	isothermal	transformation	at	T	H	.	A	look	at	the	figure	is	enough
to	conclude	that	Q	G,in		<	Q	C,in	.	Similarly,	one	sees	for	the	output	heat,	in
absolute	values,	that	 .	These	observations	are	enough	to	prove	the
statement.

Fig.	3.15 A	generic	reversible	cycle	and	a	Carnot	cycle

3.10	 Principle	of	Maximum	Entropy
In	Sect.	3.7,	we	saw	three	spontaneous	processes	in	which	the	entropy	of	the



system	increases.	These	are	just	examples	of	a	fundamental	general	property	of
thermodynamics	that	we	shall	now	prove.

Consider	a	thermodynamic	system	spontaneously	transforming	from	the
equilibrium	state	A	to	the	equilibrium	state	B.	In	Fig.	3.16,	the	process	is	labeled
IR	for	“irreversible”.	Consider	also	a	reversible	process	(R	in	the	figure)	taking
the	system	back	to	A.	The	cycle	composed	of	these	two	transformations	is
irreversible,	because	it	contains	an	irreversible	process.	The	Clausius	theorem
states	that

Fig.	3.16 Cycle	composed	of	a	spontaneous	process	from	A	to	B	and	a	reversible	one	from	B	to	A

The	right-hand	side	is	the	entropy	variation,	being	the	integral	in	a	reversible
process.	We	have

	 (3.35)

We	see	once	more	that	the	Clausius	integral	of	δQ/T	is	equal	to	the	entropy
variation	if	the	process	is	reversible;	otherwise	it	is	smaller	than	it.

Consider	now	a	generic	adiabatic	process	from	the	equilibrium	state	A	to	the
equilibrium	state	B.	The	Clausius	integral	is	zero.	These	processes	may	be
reversible	or	not	and	Eq.	(3.35)	gives

	 (3.34)
This	very	important	relation	establishes	that	the	entropy	of	a	thermally-

isolated	system	can	never	decrease.	As	a	consequence,	any	thermally-isolated
system	spontaneously	evolves	towards	its	state	of	maximum	entropy.	Once
having	reached	this	state,	the	system	remains	there	indefinitely	(in	absence	of
external	perturbations).

The	conclusion	is	very	general.	Indeed,	a	non-isolated	system	exchanges	heat
with	a	certain	number	of	sources.	It	is	always	possible	to	locate	these	sources,
which	are	in	the	neighboring	space	of	the	system.	We	shall	call	the	environment
of	the	system	the	set	of	sources	with	which	it	can	exchange	heat.	Then,	the
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system	composed	of	the	system	we	are	considering	and	its	environment	is
thermally	isolated,	and	Eq.	(3.34)	holds	for	it.	The	conclusion	is	called	the
principle	of	maximum	entropy	,	which	can	be	formulated	as	“the	entropy	of	the
sum	of	any	thermodynamic	system	and	its	environment	can	never	decrease.”

This	is	clearly	still	another	way	to	state	the	second	law	of	thermodynamics.
The	principle	of	maximum	entropy	expresses	the	irreversibility

quantitatively.	The	spontaneous	processes	of	an	isolated	system,	or	of	any
system	plus	its	environment,	always	lead	to	an	entropy	increase.	As	a	matter	of
fact,	it	distinguishes	the	arrow	of	time	,	the	arrow	that	moves	from	the	past	to	the
future.	If	we	know	two	states	of	an	isolated	system,	or	of	a	system	plus	its
environment,	and	we	do	not	know	which	came	sooner	and	which	later,	we	just
have	to	look	at	their	entropies.	The	state	of	larger	entropy	is	the	one	that	came
later.

Before	concluding,	we	note	that	one	can	find	the	principle	of	maximum
entropy	stated	as	being	that	the	entropy	of	the	Universe	cannot	decrease.	This
statement	does	not	really	have	any	meaning	in	physics,	considering	that	nobody
can	measure	the	entropy	of	the	Universe.

Problems

A	Carnot	engine	that	operates	with	a	cold	source	at	7	°C	has	the	efficiency
η	=	40	%.	To	what	temperature	should	the	hot	source	be	raised	to	have	the
efficiency	η′	=	45	%?

	
Two	vessels	of	1	and	2	m3	volumes	contain	equal	masses	of	an	ideal	gas	at
the	same	temperature.	What	is	the	difference	between	the	two	internal
energies?	If	any,	which	is	larger?	What	is	the	difference	between	the	two
entropies?	If	any,	which	is	larger?

	
A	gas	performs	a	reversible	cycle	made	of	two	isochoric	and	two	isothermal
processes,	as	in	Fig.	3.17a.	Which	are	the	signs	of	the	variations	(a)	of	the
internal	energy,	and	(b)	of	the	entropy	in	each	process	of	the	cycle.	(c)
Under	which	conditions	is	the	heat	positive?	(d)	Under	which	conditions	is
the	work	positive?
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Fig.	3.17 The	cycles	of	problems	a	3.3	and	b	3.4

	
An	ideal	gas	performs	the	cycle	in	Fig.	3.17b	made	of	two	isobaric	and	two
adiabatic	processes.	Which	are	the	signs	of	the	variations	(a)	of	the	internal
energy,	(b)	of	the	entropy	in	each	process	of	the	cycle,	and	(c)	in	which	the
heat	is	positive?	(d)	Under	which	conditions	is	the	work	positive?

	
Consider	the	Carnot	cycle	in	Fig.	3.3.	The	fluid	is	oxygen,	to	be	considered
an	ideal	gas.	Its	mass	is	m	=	0.4	kg.	In	the	warmer	isothermal	process	at	T	H
	=	500	K,	the	gas	expands	from	the	volume	V	A		=	10−2	m3	to	V	B
	=	2	×	10−2	m3.	The	work	done	in	a	cycle	is	14.4	kJ.	The	molar	heat	C	V
	=	(5/2)	R	is	constant.	Calculate	the	work	W	DA	.

	
How	does	the	entropy	of	an	ideal	gas	behave	in	the	following	reversible
expansions:	(a)	adiabatic,	(b)	isobaric,	(c)	isothermal	processes?

	
Can	the	entropy	of	a	system	increase	in	a	process	in	which	the	system
delivers	heat	to	the	environment?

	
A	certain	quantity	of	gas	goes	from	state	A	to	B,	both	of	equilibrium:	(a)
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once	through	a	reversible	adiabatic	process,	and	(b)	once	through	an
irreversible	process.	Which	are	the	corresponding	entropy	variations?	(c)
Can	the	second	process	also	be	adiabatic?

	
A	system	passes	from	the	equilibrium	state	A	to	the	equilibrium	state	B
through	a	certain	process.	Subsequently,	it	passes	to	the	equilibrium	state	C.
Knowing	that	the	entropy	variations	are	the	opposite	of	each	other,	which	is
the	relation	between	states	A	and	C?

	
A	certain	quantity	of	ideal	gas	passes	from	the	equilibrium	state	A	to	the
equilibrium	state	B	through	a	reversible	isothermal	process	at	T	=	300	K,
making	the	work	W	AB		=	3	kJ.	Subsequently,	it	passes	to	the	equilibrium
state	C	through	a	reversible	transformation.	A	and	C	are	on	the	same
reversible	adiabatic	transformation.	What	is	the	entropy	variation	when	the
system	goes	from	B	to	C?

	
A	mole	of	an	ideal	monoatomic	gas	is	reversibly	heated	from	0	to	273	°C.
Find	the	entropy	variation	if	the	process	takes	place:	(a)	at	constant
volume,	and	(b)	at	constant	pressure.

	
An	ideal	gas	expands	in	a	reversible	isothermal	process	at	T	=	300	K,
producing	the	work	W	=	6	kJ.	Find	the	entropy	variation.

	
An	ideal	gas	expands	in	a	reversible	isothermal	process	at	the	temperature
T	from	a	state	of	entropy	S	1	to	a	state	of	entropy	S	2.	How	much	is	the
work?

	
The	heat	capacity	of	the	elements	near	absolute	zero	varies	with
temperature	as	C	=	α	T	3,	where	α	is	a	constant.	Find	the	expression	of	the



entropy.
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The	ideal	gas	that	we	have	studied	up	until	now	is	a	very	important	idealization
with	which	to	study	the	basic	laws	of	thermodynamic.	An	ideal	gas	does	not
exist,	but	real	gases	behave	approximately	as	such	for	low	enough	pressures	and
high	enough	temperatures.	In	the	real	world,	gases	are	made	of	molecules	that
are	small	but	have	non-zero	dimensions	and	exert	forces	upon	one	another	called
van	der	Waals	forces.	The	ideal	gas	would	be	made	of	point-like	non-interacting
molecules.	As	we	shall	see	in	the	next	chapter,	the	molecules	move	continuously
with	an	average	kinetic	energy	that	is	proportional	to	the	absolute	temperature.
Consequently,	a	real	gas	better	approximates	an	ideal	one	at	higher	temperatures,
when	the	potential	energy	of	the	intermolecular	forces	is	a	smaller	fraction	of	the
kinetic	energy.	Also,	if	the	pressure	of	a	given	gas	mass	is	lower,	the	average
intermolecular	distance	is	larger	and	the	intermolecular	forces	are	weaker.
However,	when	the	temperature	of	a	gas	decreases	or	its	pressure	increases,	its
behavior	differs	more	and	more	from	that	of	the	ideal	gas.	At	low	enough
temperatures,	the	fluid	condensates,	and	the	gas	becomes	a	liquid.	At	even	lower
temperatures,	the	liquid	becomes	solid.	A	substance	can	be	in	different
aggregation	states	(or	phases).	We	shall	discuss	that	in	Sect.	4.1.

In	Sect.	4.2,	we	shall	see	how	the	isothermal	curves,	for	different
temperatures,	on	the	p,Vplane	for	a	fluid	(gas	or	liquid)	are	measured	and	then
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discuss	the	results.	In	the	subsequent	section,	we	shall	see	how	a	state	equation,
the	van	der	Waals	equation,	is	able	to	give	an	approximate	description	of	the
data.

While	in	an	ideal	gas,	the	internal	energy	is	a	function	of	the	temperature
alone,	for	the	real	ones,	it	depends	on	the	volume	as	well	(namely	on	the	average
distance	between	molecules).	We	shall	see	how	this	was	experimentally
established	by	Joule	and	Thomson	in	a	famous	experiment	in	Sect.	4.4.	We	shall
then	deal	with	the	two	important	state	functions,	the	internal	energy	and	the
enthalpy.

In	the	next	three	sections	(Sect.	4.6–4.8),	we	shall	deal	with	the	aggregation
phase	transitions,	in	particular,	between	liquid	and	vapor.

In	the	final	three	sections	of	the	chapter	(Sects.	4.9–4.11),	we	shall	study	the
capillary	phenomena,	which	appear	at	the	interfaces	between	different
aggregation	phases,	a	liquid	and	a	gas,	a	liquid	and	a	solid,	and	a	gas	and	a	solid.
In	particular,	a	liquid	and	its	own	vapor	are	always	present	in	boiling	and
vaporization	phenomena.

4.1	 States	of	Matter
In	this	section,	we	shall	give	some	basic	hints	on	the	structure	of	matter.	Our
main	interest	is	in	understanding	the	orders	of	magnitude	of	the	relevant	physical
quantities.	All	macroscopic	bodies	are	made	of	very	small	particles:	molecules
and	atoms	.	Atoms	characterize	the	elements,	molecules	the	chemical
substances.	The	number	of	atoms	in	a	molecule	ranges	from	a	single	one
(monoatomic	molecule,	which	is	just	an	atom)	up	to	hundreds	of	millions.	The
idea	that	observed	differences	between	substances	are	due	to	the	behavior	of
elementary	objects	was	developed	by	the	Greek	philosophers.	The	origin	of	the
atomic	theory	is	credited	by	Aristotle	to	Leucippus	,	who	flourished	in	the	Vth
century	BC	in	Miletus,	a	Greek	island	near	the	coast	of	Asia	Minor.
Unfortunately,	only	a	few	fragments	of	Leucippus’s	writing	remain.	The	theory
was	fully	developed,	in	philosophical	terms,	by	his	pupil	Democritus	of	Abdera
(460–370	BC).	The	question	posed	by	Democritus	was	as	follows.	One	can
divide	a	piece	of	matter,	for	example,	a	piece	of	iron,	into	two	parts,	obtaining
two	pieces	of	iron.	One	can	then	break	one	of	the	pieces	in	half,	and	in	half
again,	and	in	half	again.	Can	the	process	continue	forever?	His	answer	was	no,
the	process	must	end	at	some	point	when	the	smallest	bit	of	matter	is	reached.
This	bit	is	indivisible,	“atom”	in	Greek.	Atoms	move	continually	in	a	vacuum
and	are	able	to	aggregate	in	different	configurations	corresponding	to	all	the
substances	we	observe.	This	was	indeed	a	very	brilliant	idea,	but	still	a



philosophical	one,	which	lacked	experimental	control.	Only	23	centuries	later,
the	existence	of	atoms	was	experimentally	established.	It	was	not	a	single
discovery,	but	rather	the	result	of	a	gradual	process.	The	first	important	finding
was	by	John	Dalton	(UK,	1766–1844)	who,	performing	experiments	with
various	chemical	species,	showed,	in	1803–1808,	that	matter	is	made	of
“elementary”	objects,	the	atoms,	taking	place	in	the	chemical	reactions.	His
conclusions	are	summarized	in	the	Dalton	law	of	multiple	proportions	.	The	law
states	that,	if	two	elements	form	more	than	one	compound	between	them,	then	the
ratios	of	the	masses	of	the	second	element	that	combine	with	a	fixed	mass	of	the
first	element	will	be	ratios	of	small	whole	numbers.	Soon	after,	in	1811,	Amedeo
Avogadro	(Italy,	1776–1878)	formulated	the	law	we	mentioned	in	Sect.	2.3,
establishing	that	gas	behaves	as	if	composed	of	molecules.	In	1897,	Joseph	John
Thomson	(UK,	1856–1940)	discovered	the	electron.

We	know,	however,	that	the	atoms,	even	if	they	are	the	elementary	objects	in
the	chemical	reactions,	have	an	internal	structure.	Atoms	are	composed	of	a
central	nucleus	,	which	has	a	positive	electric	charge,	and	electrons	,	which	are
negative,	and	which	form	a	“cloud”	around	the	nucleus.	Atoms	are	electrically
neutral;	the	binding	force	is	electromagnetic	.	The	atomic	nucleus	has	an	internal
structure	as	well;	it	is	made	of	protons	and	neutrons	.	The	force	keeping	the
nucleus	together	is	called	the	nuclear	force	.	Protons	and	neutrons	are	composite
objects	too;	they	are	made	of	quarks	,	bound	by	the	so-called	color	force	,	for
which	“color”	is	a	funny	name	given	by	physicists,	one	which	has	nothing	to	do
with	color	as	we	know	it.	The	nuclear	force,	to	be	precise,	is	a	consequence	of
the	color	force.	The	physical	laws	at	the	atomic	and	sub-atomic	scales	are
quantistic	and	cannot	be	discussed	at	the	level	of	this	course.	However,	we	are
interested	here	in	giving	the	information	that	is	necessary	to	interpret	the
macroscopic	behavior	of	matter,	the	thermodynamic	phenomena.	The	smallest
scale	objects	that	intervene	in	these	phenomena	(such	as	in	the	chemical
reactions	that	we	have	mentioned)	are	molecules	and	atoms.

The	geometrical	dimensions	of	atoms,	different	from	one	atomic	species	to
another,	are	the	dimensions	of	this	negative	“cloud”.	The	order	of	magnitude	is
the	tenth	of	a	nanometer,	or	10−10	m.	The	diameters	of	the	nuclei	are	four	orders
of	magnitude	smaller,	between	1	and	10	fm	(10−15–10−14	m).	If	we	were	to
magnify	a	nucleus	to	the	size	of	the	dot	above	an	“i”	on	this	page,	the	size	of	the
atom	would	be	on	the	order	of	meters.

The	number	of	electrons	(symbol	e),	called	Z,	characterizes	the	element,	and
varies	from	1	for	hydrogen	to	92	for	uranium	(Mendeleev	table).	Electrons
inside	atoms	behave	according	to	quantum,	not	classical,	laws.	In	particular,



electrons	do	not	have	well-defined	trajectories;	we	cannot	properly	speak	of
electron	orbits	around	the	nucleus	(even	this	is	found	in	many	books).	Atomic
electrons	move	very	quickly	compared	with	macroscopic	objects;	their	speeds
are	on	the	order	of	104	m/s,	which,	however,	are	much	smaller	than	the	speed	of
light.	The	characteristic	times	of	electron	motion	are	much	smaller	than	the
resolving	times	of	our	instrument	and,	consequently,	we	observe	an	average
configuration	of	the	atom.	We	see	the	electron	charge	as	continuously	distributed
in	a	region	around	the	nucleus,	in	a	greater	density	where	the	probability	of
finding	one	electron	is	larger	and	a	more	sparse	assemblage	where	the
probability	is	smaller.	We	can	then	think	of	a	cloud	of	charge,	even	if	there	is
only	one	electron.

The	atomic	nucleus	is	made	of	protons	(p)	that	are	positive	and	neutrons	(n)
that	are	neutral.	Different	electric	charge	apart,	protons	and	neutrons	are	very
similar	and	are	collectively	called	nucleons	.	For	every	element,	the	number	of
protons	is	equal	to	the	number	of	electrons.	Protons	and	electrons	have	equal	and
opposite	charges;	atoms,	as	we	said,	are	globally	neutral.

The	proton	and	electron	electric	charge	is	the	smallest	existing	free	charge	in
nature,	and	is	called	an	elementary	charge	.	As	a	matter	of	fact,	quarks	have
smaller	charges.	Nucleons	contain	two	types	of	quark,	called	up	(u)	and	down
(d).	Their	charges	are	2/3	and	−1/3	of	the	elementary	charge,	respectively.	The
proton	contains	2	u	and	1	d,	the	neutron	1	u	and	2	d.	However,	quarks	are	never
free;	they	live	inside	the	nucleons	and	other	particles	of	the	same	category.	The
charges	of	all	the	other	objects	are	integer	multiples	of	the	elementary	charge.
One	might	think	to	adopt	the	elementary	charge	as	the	unit,	but	this	is	not
convenient	because	enormous	numbers	would	represent	all	the	usual	charges.
The	unit	of	electric	charge	in	the	SI	is	the	coulomb	(C).	We	shall	give	the	precise
definition	of	the	coulomb	in	the	3rd	volume	of	the	course;	it	is	not	relevant	to
our	discussion	here.	The	value	of	the	elementary	charge,	in	round	numbers,	is

	 (4.1)
This	value	is	commonly	used	to	define	an	energy	unit	at	the	scale	of	the

atomic	and	molecular	energies,	the	electronvolt	.	The	electornvolt	is	the	kinetic
energy	gained	by	an	electron	falling	under	the	potential	difference	of	one	volt.
As	such,	its	numerical	value	in	joule	is	equal	to	the	elementary	charge,	namely

	 (4.2)
The	presence	of	neutrons	in	the	nucleus	is	necessary	to	guarantee	its	stability.

Inside	the	nucleus,	the	repulsive	electric	force	between	protons	tends	to	destroy
it.	The	nuclear	force	is,	however,	attractive	and,	under	the	same	conditions,	has



the	same	intensity	between	protons,	between	neutrons,	and	between	a	proton	and
a	neutron.	The	balance	between	electric	and	nuclear	forces	is	realized	when	the
number	of	neutrons	is	somewhat	larger	than	the	number	of	protons.	The	nucleon
excess	increases	with	increasing	nuclear	size.	The	number	of	neutrons	is
indicated	with	N,	and	the	total	number	of	nucleons	(protons	plus	neutrons)	with
A	(A	=	N	+	Z),	which	is	called	the	atomic	number	.	For	a	given	atomic	species
(namely	a	given	Z),	more	than	one	nuclear	species	may	exist,	with	different
values	of	N	and,	consequently,	of	A.	All	of	them	have	the	same	chemical
properties	and	are	lodged	in	the	same	box	of	the	Mendeleev	table	.	For	this
reason,	they	are	named	isotopes	(meaning	“same	place”	in	Greek).	The
percentages	of	the	different	stable	isotopes	of	the	same	element	are	fixed	in
nature.

For	example,	hydrogen	has	two	stable	isotopes:	1H	(the	superscript	is	A),	the
nucleus	of	which	is	simply	the	proton,	and	2H,	the	deuteron,	the	nucleus	of
which	is	made	of	a	proton	and	a	neutron.	A	third	isotope,	the	tritium	3H,	exists
but	is	unstable,	having	a	half-life	of	12.32	year.	It	is	continuously	produced	by
cosmic	ray	collisions	in	the	atmosphere.	The	second	element	is	helium	,	which
has	two	stable	isotopes,	3He	(2p,1n)	and	4He	(2p,2	n),	and	so	on.

The	masses	of	electron	and	nucleons	are	known	through	many	significant
figures.	Here,	we	give	values	with	a	few	digits	only.	The	electron	mass	is

	 (4.3)
The	proton	mass	is	about	1836	times	larger:

	 (4.4)
The	neutron	mass	is	very	close	to	the	proton	mass,	but	a	bit	larger.

	 (4.5)
From	the	above	values,	we	see	that	the	largest	fraction	of	the	atom	mass,	and

with	them,	of	the	mass	of	matter,	is	concentrated	in	the	nucleus.	The	electrons’
contribution	is	only	a	few	parts	in	ten	thousand.	One	might	think	that	the	atomic
masses	of	the	elements	are	integer	multiples	of	the	proton	mass.	This	is	so	only
in	a	rough	approximation,	for	three	reasons.	First,	every	element	is	a	mixture	of
different	isotopes	with	different	values	of	A,	in	some	proportions;	second,	the
proton	and	neutron	masses	are	almost,	but	not	exactly,	equal;	third,	the	mass	of
the	nucleus	is	not	equal	to	the	sum	of	the	masses	of	its	nucleons;	it	is	smaller
than	that	due	to	the	binding	energy,	as	we	have	seen	in	Chap.	6	of	the	1st
volume.

The	mass	of	the	u	and	the	d	quarks	are	about	2/1000	and	4/1000	of	the
nucleon	mass,	respectively.	This	is	really	surprising.	From	where	does	the	largest



fraction	of	the	mass	of	the	nucleons,	and	consequently	of	the	nuclei,	of	the
atoms,	or	of	matter	in	general,	come?	The	answer	is	in	the	very	peculiar	behavior
of	the	quantistic,	color	force.	On	one	side,	it	increases	with	the	distance	so	much
that	quarks	cannot	be	taken	apart;	on	the	other,	its	binding	energy	is	positive	and
very	large.	Consequently,	instead	of	a	mass	defect,	such	as	in	atoms	and	nuclei,
in	the	nucleons,	there	is	a	mass	excess.	Namely,	the	mass	of	the	nucleon	is	much
larger	than	the	sum	of	the	masses	of	its	components.	This	excess	is	the	largest
fraction	of	the	mass	of	matter.

As	far	as	we	know,	electrons	and	quarks	do	not	have	an	internal	structure	and
are	point-like.	Namely,	their	sizes,	if	any,	are	smaller	than	the	experimental
resolution,	which	is	of	the	order	of	the	attometer	(10−18	m).	Nucleons	have	a
radius	smaller	than,	but	comparable	to,	nuclei,	of	a	few	femtometers,	and,	as	we
have	already	mentioned,	are	composed	of	quarks.	The	internal	structure	of	the
nuclei,	and	even	more,	the	structure	of	the	nucleons,	does	not	have	any	influence
on	the	thermodynamic	processes	we	are	discussing.	Consequently,	we	shall	not
enter	into	any	further	detail.

In	conclusion,	matter	is	made	of	an	enormous	number	of	very	small,	charged
elementary	constituents,	with	electric	charges	of	both	signs,	which	are	so
intimately	and	precisely	mixed	that	their	effects,	which	are	enormous	inside	the
atoms,	almost	disappear	outside	of	them.	Some	effect,	however,	remains	outside
the	atom.

Two	or	more	atoms,	depending	on	their	species,	may	form	a	molecule	.	The
nature	of	the	several	different	existing	molecular	bonds	is,	in	all	cases,
quantistic.	We	can	only	give	a	few	hints	here.	The	simplest	molecules	are	made
of	two	atoms.	The	simplest	types	of	bond	are	the	ionic	bond	and	the	covalent
bond	.	There	are	atoms,	such	as,	for	example,	Na,	that	are	happy	to	lose	an
electron	and	to	become	positive	ions	(Na+),	and	there	are	those	that	can	capture
an	electron,	like	Cl,	becoming	a	negative	ion	(Cl−).	Two	opposite	charged	ions
bind	together,	forming	a	molecule	(NaCl,	in	the	example)	in	an	ionic	bond.	The
quantum	binding	interaction	corresponds	to	the	macroscopic	electrostatic
attractive	force	between	opposite	charges.	The	two	atoms	in	molecules	like	H2,
O2,	HCl	and	many	others	are	bound	by	a	different	interaction	that	has	no
classical	analogue,	called	a	covalent,	because	both	partners	have	the	same
chemical	valence.	The	two	nuclei	share	some	of	the	electrons	and	the	resulting
common	part	of	the	electron	cloud	binds	the	two	partners.	The	common	electron
cloud	is	thicker	in	the	region	between	the	two	nuclei,	opposing,	in	this	way,	the
repulsive	force	between	the	two	nuclear	positive	charges.

Figure	4.1a	gives	an	example	of	the	interaction	of	potential	energy	in	a



covalent	bond,	the	HCl	molecule.	This	is	just	an	example	for	the	purpose	of
discussing	the	general	features	in	a	semi-quantitative	form.	Keep	in	mind	that
there	is	a	quantitatively	important	difference	between	different	molecules.	The
potential	energy	U	p	is	given	in	an	electronvolt	as	a	function	of	r,	which	is	one
half	of	the	distance	between	the	nuclei.	The	function	has	a	rather	deep	minimum
at	a	certain	value,	r	0.	At	smaller	distances,	the	curve	grows	rapidly.	The	force	is
the	derivative	of	the	potential,	which	is	the	slope	of	the	curve	in	the	figure.	For
r	<	r	0,	the	force	is	strong	and	negative,	meaning	that	the	two	atoms	repel	each
other.	This	is	due	to	the	electric	action	of	the	two	electron	clouds	that	become
compressed.	The	two	atoms	behave	almost	the	same	as	two	rigid	spheres.	The
distance	r	0	is	the	stable	equilibrium	distance	and	is,	in	general,	on	the	order	of
tenths	of	a	nanometer	(0.12	nm	for	HCl	in	the	figure).	The	depth	of	the	potential
minimum	U	p0	characterizes	the	strength	of	the	bond	between	the	two	atoms.
Indeed,	U	p0	is	the	minimum	energy	we	must	give	to	the	system	in	order	to	break
the	molecule.	We	can	do	so,	for	example,	by	hitting	it	with	another	molecule.
Typical	values	of	U	p0	are	on	the	order	of	the	electronvolt	(−4.5	eV	for	HCl).

Fig.	4.1 	a	Interaction	potential	in	the	HCl	molecule.	b	van	der	Waals	potential

An	important	characteristic	of	the	forces	binding	the	molecules,	which	we
shall	call	chemical	forces	,	is	the	saturation	.	This	means	that,	once	the	molecule
has	been	built,	the	chemical	force	will	not	act	on	another	atom	that	may	pass
nearby.

Molecules	interact	with	each	other	through	a	force	called	the	van	der	Waals
force	,	after	Johannes	Diderik	van	der	Waals	(The	Netherlands,	1837–1910),
who	gave	it	its	expression	in	1873.	These	forces	are	different	from	chemical
forces.	Rigorously	speaking,	they	are	rather	complicated;	for	example,	they
depend	on	the	relative	orientation	of	the	interacting	molecules.	We	are	interested,



however,	in	the	average	value	of	all	possible	orientations.	Figure	4.1b	shows	a
typical	mean	van	der	Waals	potential	(the	force	is	obviously	its	derivative)	as	a
function	of	half	of	the	distance	between	the	molecular	centers	r.	At	first	sight,	its
behavior	is	qualitatively	similar	to	the	potential	of	the	chemical	force,	in
particular,	with	a	minimum	at,	using	the	same	symbol,	r	0.	However,	there	are
also	very	important	differences.	The	similarity	is	that	the	van	der	Waals	force	is
also	repulsive	and	rapidly	growing	at	short	distances	(r	<	r	0)	and	attractive	and
slowly	decreasing	at	large	distances	(r	>	r	0).	The	molecules	can	be	roughly
approximated	with	small	rigid	bodies	of	radius	r	0	as	well.	Notice	that	the
“radius”	r	0	of	the	molecules	is	larger	than	the	“radius”	r	0	of	the	atoms,	even	for
the	simplest	molecules.	For	the	diatomic	ones,	such	as	HCl,	r	0	=	0.3–0.4	nm.

The	(feeble)	attractive	force	between	molecules	gradually	vanishes	at	large
enough	distances.	We	can	consider	that	a	molecule	acts	only	within	a	certain
distance,	which	we	call	the	molecular	action	radius	and	indicate	with	r	a	.	This
cannot	be	defined	very	rigorously,	but	we	can	think	of	it	as	being	a	few	times
greater	than	r	0,	typically	less	than	1	nm.

We	did	not	show	any	energy	scale	in	Fig.	4.1b,	because	the	energy	values
vary	by	more	than	an	order	of	magnitude	for	different	molecules.	In	any	case,
however,	the	depth	of	the	potential	minimum	of	the	intermolecular	force	is	much
smaller	than	that	of	the	chemical	ones.	It	typically	ranges	between	10	meV	and	a
few	100	meV.

Another	very	important	difference	is	that	van	der	Waals	forces,	as	opposed	to
chemical	ones,	do	not	saturate.	Two	nearby	molecules	interact	with	other
molecules	as	well.	As	a	result,	all	molecules	that	are	closer	than	the	action	radius
attract	each	other.	This	feature	is	at	the	origin	of	the	liquid	and	solid	states,
which	we	shall	now	briefly	describe.

In	a	gas,	the	typical	distance	between	neighboring	molecules	is	much	greater
than	the	molecular	size.	Their	motion	is	completely	disordered.	It	is	called
thermal	motion	.	The	average	kinetic	energy	of	the	molecules	in	a	gas	is
considerably	larger	than	the	potential	energy	of	the	van	der	Waals	force,	and,	as
we	shall	see,	increases	with	temperature.	We	shall	study	the	microscopic
interpretation	of	thermodynamics	in	more	detail	in	Chaps.	5	and	6.

Let	us	evaluate	the	order	of	magnitude	of	the	distance	between	molecules.
As	the	reader	will	remember,	a	mole	of	any	gas,	considering	it	to	be	ideal,
occupies	the	same	volume	under	the	same	conditions	of	temperature	and
pressure.	The	molar	volume	at	STP	is	22.4	L.	The	average	distance	between
molecules	〈r〉	is	the	cubic	root	of	the	average	volume	available	to	one	molecule,



which	is	the	molar	volume,	divided	by	the	Avogadro	number.	Hence,

The	mean	distance	at	STP	is	substantially	larger	than	the	molecular	action
radius,	and	the	van	der	Waals	force	is	weak	and	can	be	neglected	in	a	first
approximation;	the	gas	behaves	approximately	as	an	ideal	one.	If	the	pressure
increases,	however,	the	distances	between	molecules	become	smaller	and
smaller,	and	the	van	der	Waals	force	effects	come	into	play.	The	state	equation
becomes,	approximately,	the	van	der	Waals	equation,	which	we	shall	study	in
Sect.	4.3.

If	the	average	intermolecular	distance	further	decreases,	due	to	increasing
pressure,	or	the	kinetic	energy	decreases,	due	to	decreasing	temperature,	the
attractive	van	der	Waals	force	effects	become	more	and	more	important.	Finally,
the	gas	liquefies.	This	is	the	second	aggregation	phase,	different	from	the	gas,	in
which	the	molecules	are,	so	to	speak,	touching	one	another.	The	average	distance
between	molecules	is	substantially	2r	0.	The	repulsive	force	becomes	very	strong
if	we	try	to	further	reduce	the	distance.	Consequently,	the	volume	of	a	liquid	is
almost	constant.	On	the	other	hand,	the	molecules	in	a	liquid	are	free	to	slip	one
over	the	other.	Consequently,	a	liquid	has	no	definite	shape,	taking	the	shape	of
the	container.	The	inter-molecular	distances	are	one	order	of	magnitude	smaller
than	for	a	gas	at	STP.	Consequently,	the	density	of	the	liquid	is	three	orders	of
magnitude	larger	than	that	of	a	gas	at	STP.	As	a	rule	of	thumb,	the	density	of	a
liquid	is	10	%	smaller	than	that	of	the	corresponding	solid.

If	we	further	decrease	the	temperature,	the	average	kinetic	energy	of	the
molecules	decreases	too	and	the	substance,	under	certain	conditions,	becomes
solid	.	This	is	the	third	phase,	or	aggregation	state,	of	matter.	In	the	solid	state,
the	constituent	particles,	which	may	be	ions,	atoms	or	molecules,	are	closely
packed	together.	The	van	der	Waals	forces	are	so	strong	that	the	particles	cannot
move	freely.	They	can,	and	do,	vibrate	around	fixed	positions.	As	a	result,	the
solid	not	only	has	a	(almost)	fixed	volume,	like	the	liquid,	but	also	a	(almost)
fixed	shape.	In	the	properly-named	solid	state,	the	particles	arrange	themselves
in	symmetric	structures,	forming	a	crystal	.	In	this	structure,	a	unit	cell	repeats
itself	periodically.	The	shape	of	the	cell	depends	on	the	constituent	ions,	atoms
or	molecules	and	may	be	a	cube,	a	prism,	a	tetrahedron,	etc.	The	vertices	of	the
periodic	structure	are	the	equilibrium	positions	around	which	the	particles
oscillate.	The	distances	between	particles	are	on	the	same	order	as	those	in	the
liquids.	As	already	mentioned,	the	densities	are	similar,	some	10	%	larger	in
solids.	Figure	4.2	shows	two	examples	of	crystalline	structures:	(a)	represents	12
(not	rectangular)	parallelepiped	cells;	(b)	represents	three	cells	that	are



hexagonal	section	prisms,	with	an	atom	at	the	center	of	the	face.

Fig.	4.2 Crystal	structures	with	a	parallelepiped	cell;	b	face	centered	hexagonal	prismatic	cell

Crystallography	is	the	branch	of	physics	that	studies	crystals	and	their
symmetries	experimentally	and	theoretically.	The	existing	shapes	are	many,	but
we	shall	not	deal	with	them.	We	will	only	mention	that	the	symmetry	rarely
appears	at	the	macroscopic	level.	In	these	fascinating	cases,	one	talks	of	crystals
in	the	common	language	as	well.	Much	more	frequently,	the	crystal	structure,
which	exists,	does	not	appear.	This	is	the	case	with	metals,	for	example.	In	these
cases,	the	macroscopic	body	is	an	aggregate	of	microcrystals	.	Their	sizes	are	on
the	order	of	the	micrometer,	which	is	too	small	to	be	seen	with	the	naked	eye,
but	very	large	compared	to	the	atomic	sizes.	The	microcrystals	can	be	easily
seen	with	a	microscope.	Their	arrangement	appears	to	be	completely	disordered.
Consequently,	the	body	does	not	have	a	symmetric	structure	at	the	macroscopic
level.

Several	bodies	exist,	like	plastic	materials	and	glasses,	which	are	solid	in	the
common	language,	as	they	have	a	fixed	shape.	They	are	not	properly	solid,
according	to	the	definition	given	in	physics.	Indeed,	they	do	not	have,	even	at
the	microscopic	level,	any	symmetrical	structure.	As	a	matter	of	fact,	they	are
liquid,	with	an	extremely	high	viscosity.

4.2	 Isothermal	Transformations	of	Real	Fluids
As	we	know,	isothermal	transformations	of	the	ideal	gas	on	the	plane	V	p	are
hyperbolae	with	the	coordinate	axes	as	asymptotes,	corresponding	to	the	state
equation	pV	=	const.	In	the	real	world,	this	law	is	approximately	valid	for	gases
at	high	enough	temperatures	and	small	enough	pressures.	The	knowledge	of	the
isothermal	curves	of	a	gas	is	equivalent,	for	any	practical	point	of	view,	to	the
knowledge	of	its	state	equation,	even	if	the	latter	cannot	be	expressed	in	an



analytical	form.	An	isothermal	curve	of	a	gas	can	be	determined	experimentally
by	measuring	the	pressure	as	a	function	of	the	volume,	keeping	the	temperature
constant.	We	enclose	the	gas	in	a	cylinder	with	a	piston,	so	as	to	be	able	to
change	its	volume.	Clearly,	we	must	eliminate	the	air	from	the	cylinder,
producing	a	vacuum	with	a	pump,	before	introducing	the	gas.	We	put	the
cylinder	into	thermal	contact	with	a	bath	at	the	desired	temperature	and	proceed
slowly,	varying	the	volume	and	measuring	volume	and	pressure.	Then,	we	draw
the	isothermal	curve	through	the	points	we	have	measured.	We	repeat	the
process	for	many	temperatures.

To	be	concrete,	let	us	consider	carbon	dioxide.	The	systematic	measurements
were	done	by	Thomas	Andrews	(Ireland,	1813–1885)	in	the	1860s	and	are
shown	in	Fig.	4.3.	Consider	working	with	one	mole.	At	high	temperatures,	say
above	80	°C,	the	curves	are	similar,	but	not	identical,	to	those	of	an	ideal	gas.
The	similarity	is	closer	the	higher	the	temperature.	At	lower	temperatures,	the
curves	develop	an	inflection	point,	at	which	the	slope	is	negative.	These	curves
—such	as	the	one	of	40°—resemble	hyperbolae	at	large	volumes,	i.e.,	small
pressures,	but	behave	very	differently	at	small	volumes.	The	curve	has	a	vertical
asymptote,	which	is	not,	as	in	the	ideal	gas,	the	ordinate	axis.

Fig.	4.3 The	isothermal	curves	of	CO2

Going	further	down	in	temperature,	we	meet	an	important	isothermal,
characterized	by	having	zero	slope	at	its	inflection	point.	It	is	drawn	thicker	in
the	figure	and	is	called	a	critical	isothermal	.	The	inflection	point	is	the	critical
point	,	K	in	the	figure.	Its	coordinates	are	the	critical	temperature	(T	c		=	31.04	°C
for	CO2),	critical	pressure	and	critical	volume	(molar	because	we	are	dealing



with	one	mole).	As	we	shall	now	see,	gases	can	condensate	only	at	temperatures
lower	than	that	which	is	critical	for	each	one.	Under	these	conditions,	the	gas	is
said	to	be	a	vapor	.

Consider	a	temperature	lower	than	the	critical	one,	20	°C,	for	example.	Let
us	start	from	a	large	volume,	hence	from	a	low	pressure.	Decreasing	the	volume,
when	the	pressure	reaches	a	well-defined	value	(point	B),	which	is	about	6	MPa
(60	atm)	for	CO2,	the	pressure	ceases	to	vary,	even	if	the	volume	decreases.	The
representative	point	moves	on	a	horizontal	line,	i.e.,	at	constant	pressure.	In	this
segment,	the	isothermal	process	is	isobaric	as	well.	At	the	end	of	the	horizontal
segment	(point	A),	the	pressure	suddenly	increases	and	it	is	practically
impossible	to	further	decrease	the	volume.	The	substance	that	was	easy	to
compress	at	larger	volumes	has	become	incompressible.

Let	us	look	inside	the	cylinder.	We	see	that	beyond	the	point	B,	part	of	the
gas	is	liquid.	The	gas	to	liquid	phase	transition	is	called	condensation	.	In	the
segment	BA,	both	liquid	and	gas	are	contemporarily	present.	The	two	phases
coexist	in	equilibrium.	For	a	given	substance	at	a	given	temperature,	this	can
happen	only	at	a	certain	pressure,	which	is	called	the	saturated	vapor	pressure	.
Let	us	make	clear	that	the	equilibrium	between	the	two	phases	can	be	reached
only	if	the	following	conditions	are	satisfied.	First,	the	fluid	must	be	in	a	closed
container;	otherwise,	the	vapor	dissipates.	Second,	there	must	be	no	other	gas
(air,	for	example)	present	in	the	container;	otherwise,	the	pressure	of	the	liquid	is
equal	to	the	pressure	of	the	vapor	plus	the	foreign	gas.	We	will	also	notice	that
the	saturated	vapor	pressure	depends	on	the	temperature,	but	not	on	the	volume.
If	we	repeat	the	experiment	with	a	different	quantity	of	CO2,	we	find	the	same
pressure,	at	a	different	volume.

The	lengths	of	the	parts	PB	and	PA,	in	which	the	representative	point	P
divides	the	line	AB,	are	proportional	to	the	fractions	of	liquid	and	vapor,
respectively.	In	A,	all	the	substance	is	liquid.	Its	volume	cannot	be	further
reduced.	The	slope	of	the	isothermal	curve	becomes	almost	infinite.

At	still	lower	temperatures	(for	example,	at	0	°C),	we	observe	similar
behavior,	but	the	horizontal	stretch	gets	longer,	with	much	more	on	the	larger
volume	side	than	on	the	smaller	volume	side.	This	is	because	the	volume	of	the
liquid	has	only	a	small	dependence	on	temperature.	During	condensation,	the
thermal	bath	absorbs	heat	from	the	substance.	The	heat	absorbed	for	the
complete	condensation	is	a	well-defined	quantity	proportional	to	the	mass,
characteristic	of	the	substance.	An	equal	heat	is	delivered	to	the	bath,	rather	than
absorbed,	in	the	inverse	process,	which	is	the	vaporization	.	The	heat	for	the
phase	transition	of	the	unit	mass	is	called	the	specific	latent	heat	of	vaporization



.	For	a	mole	of	the	substance,	it	is	called	the	molar	.	The	heat	of	vaporization
depends	upon	temperature,	being	smaller	for	higher	temperatures	and	becoming
zero	at	the	critical	temperature.

The	critical	temperature	T	c	is	the	maximum	temperature	at	which	the
substance	can	be	liquid.	At	higher	temperatures,	only	the	gas	state	is	possible,
for	whatever	pressure.	The	critical	point	,	K	in	the	figure,	is	particularly
interesting.	In	its	neighborhood,	infinitesimal	variations	of	pressure	or
temperature	make	the	substance	change	from	liquid	to	vapor	or	vice	versa.	The
vapor	heat	is	zero	at	the	critical	temperature.	As	a	matter	of	fact,	under	these
conditions,	the	vapor	pressure	is	high	and	the	density	is	very	close	to	the	liquid
density.	The	difference	between	the	two	phases	is	vanishingly	small.

In	summary,	inside	the	bell-shaped	curve,	grey	in	the	figure,	called	the
coexistence	curve	,	the	saturated	vapor	and	liquid	phases	are	in	equilibrium.	On
the	left-hand	side	of	the	coexistence	curve	and	of	the	critical	isothermal,	the
substance	is	in	the	liquid	phase	(darker	grey	in	the	figure).	On	the	right-hand
side	of	the	coexistence	curve,	below	the	critical	isothermal,	the	substance	is	non-
critical	vapor,	or	overheated	vapor	;	this	is	a	vapor	at	a	pressure	smaller	than	the
saturated	vapor	pressure	(at	the	given	temperature).

The	behavior	we	have	described	for	carbon	dioxide	is	similar	for	the	other
fluids,	once	the	values	of	the	critical	constants,	which	are	different	for	different
substances,	are	considered.	As	a	matter	of	fact,	the	approximate	validity	of	the
law	of	the	corresponding	states	has	been	experimentally	established.	We	must
use	the	so-called	reduced	variables	,	which	are	pressure,	volume	and	temperature
divided	by	their	critical	values,	namely

	 (4.6)
If	we	draw	the	reduced	temperature	isothermal	curves	(τ	=	cost)	on	the	plane

π,	ϕ,	we	find	that	the	same	curves	approximately	represent	the	behavior	of	all	the
fluids.

Table	4.1	reports	the	critical	parameters	of	several	substances.

Table	4.1 	Critical	parameters	of	several	substances

Substance T	c	(K) p	c	(MPa) V	c	(cm
3mol−1) ρ	c	(kg	m

−3)

Helium 5.3 0.23 58 69
Hydrogen 33.3 1.3 64.5 31
Nitrogen 126.2 3.39 90 311
Argon 150.9 4.91 85.0 531
Oxygen 154.8 5.08 74.4 430



Methane 191 4.64 98.8 162
Ethylene 283.1 5.19 124 225
Ethane 305.4 4.88 143 211
CO2 304.2 8.1 95.6 460

Propane 369.9 4.2 200 220
Ammonia 405.6 11.4 72.4 235
Water 647.3 22.12 45 400

4.3	 Van	der	Waals	Equation
As	we	have	seen	in	Sect.	4.2,	when	the	density	of	a	gas	increases,	its	behavior
differs	more	and	more	from	that	of	an	ideal	gas,	finally	becoming	liquid.	These
phenomena	depend	upon	the	forces	between	molecules.	It	is	not	possible	to	take
into	account	analytically	the	effects	of	these	interactions	and	theoretically
establish	a	precise	state	equation.	We	can	find	it	experimentally,	as	we	have	seen
in	Sect.	4.2.

It	is,	however,	possible	to	take	into	account	the	main	characteristics	of	the
intermolecular	forces	and	write	a	state	equation	describing	approximately	the
behavior	of	a	real	fluid.	This	is	the	van	der	Waals	equation	.	We	shall	find	it
starting	from	the	ideal	gas	equation,	which	we	write	as

	 (4.7)
and	introduce	the	necessary	correction	terms.

We	have	already	discussed	the	intermolecular	forces	in	Sect.	4.1.	We	recall
their	principal	characters:	the	force	is	repulsive	and	rapidly	increases	when	the
distance	between	the	centers	decreases	below	a	certain	value	2r	0,	while	it	is
weakly	attractive	and	decreases	with	increasing	distance	above	2r	0.

The	rapid	increase	at	small	distances	makes	it	possible	to	consider,	in	a	first
approximation,	the	molecules	as	rigid	spheres	of	radius	r	0.	The	volume	of	the
fluid	cannot	be	reduced	below	the	volume	taken	by	the	molecule.	This	volume	is
called	the	covolume	,	which	is,	substantially	speaking,	the	volume	of	the	liquid,
which	we	will	indicate	with	b.	We	correct	the	ideal	gas	law	Eq.	(4.7)	to	take	into
account	that	the	available	volume	is	only	V–b	and	write

We	see,	in	particular,	that	the	pressure	diverges	when	V	tends	towards	b.
We	now	have	to	take	into	account	the	attractive	part	of	the	intermolecular



force.	We	start	by	observing	that	the	pressure	of	the	gas	on	the	surrounding	walls
is	due	to	the	collisions,	enormous	in	number,	of	the	molecules.	We	shall	come
back	to	that	in	Sect.	5.1.	The	pressure	is	higher	for	larger	momenta	of	the
colliding	molecules	(hence,	of	the	impulse	they	produce)	and	for	larger	numbers
of	molecules.	The	attractive	interaction	between	molecules	reduces	the	momenta
and	consequently	the	pressure.

A	molecule	far	from	the	walls	feels	the	attraction	of	the	other	molecules	in	a
sphere	of	radius	r	a	,	the	molecular	action	radius.	The	distribution	of	the
molecules	is	uniform,	and	consequently,	the	resultant	of	the	forces	is	zero
(Fig.	4.4a).	When	the	molecule	is	near	a	wall,	it	feels	the	attraction	of	the
molecules	in	half	of	the	sphere	only	(Fig.	4.4b).	The	resultant	is	a	force	directed
away	from	the	surface.	This	force,	which	slows	down	the	molecule,	is
proportional	to	the	number	of	molecules	in	the	half	sphere,	and	hence	to	the
density	of	the	gas.	On	the	other	hand,	the	pressure	is	proportional	to	the	number
of	molecules	hitting	the	wall	per	unit	time,	hence	also	to	the	gas’s	density.	In
conclusion,	the	pressure	very	near	the	wall	is	lower	than	the	pressure	in	the	bulk
by	a	quantity	that	is	proportional	to	the	square	of	the	gas’s	density,	or,	in	an
equivalent	manner,	inversely	to	the	square	of	its	volume.	Notice	that	whenever
we	measure	the	pressure,	we	introduce	an	instrument	into	the	fluid,	an	external
body.	The	pressure	we	measure	is	the	one	close	to	the	surface	of	the	instrument
(even	if	we	put	it	in	the	middle	of	the	fluid).	In	conclusion,	the	measured
pressure	p	is	the	pressure	near	to	an	external	surface,	not	the	pressure	in	the	bulk.
We	take	this	effect	into	account,	adding	to	p	the	term	a/V	2,	where	a	is	another
constant

which	can	also	be	written	as

	 (4.8)
This	is	the	van	der	Waals	equation	.	The	constants	a	and	b	are	different	for
different	fluids.	They	also	depend	on	the	mass	of	fluid,	as	we	shall	see	at	the	end
of	the	section.	The	constants	cannot	be	obtained	from	theory,	but	are	rather	free
parameters	to	be	determined	in	the	manner	best	suited	to	reproduce	the
experimental	data.



Fig.	4.4 	a	A	molecule	in	the	bulk	of	the	fluids	and	its	action	sphere;	b	a	molecule	near	a	surface

Notice	that,	if	the	gas	is	very	rarefied,	i.e.,	if	its	volume	is	large,	the
correction	terms	we	introduced	become	negligible	and	Eq.	(4.8)	goes	back	to	the
ideal	gas	law.	But	Eq.	(4.8)	can	also	describe	phenomena	at	the	opposite	limit,	at
high	density	and	high	pressure	levels.	Let	us	study	the	shape	of	the	isothermal
curves	in	the	plane	Vp.	To	this	aim,	we	write	Eq.	(4.8)	as

	 (4.9)
On	the	isothermal	curves,	obviously,	T	is	a	constant,	and	we	interpret

Eq.	(4.9)	as	the	relation	giving	V	as	a	function	of	p.	This	is	an	algebraic	equation
of	the	third	degree	in	V.	Such	equations	have	three	roots,	which	can	be	real	and
different,	real	and	coincident,	or	have	one	that	is	real	and	two	that	are	complex.
Only	real	roots	have	a	physical	meaning.	(To	be	precise,	to	have	physical
meaning,	they	must	also	be	positive;	however,	it	can	be	shown	in	the	present
case	that	if	a	solution	is	real,	it	is	also	positive,	provided	that	p	>	0).
Consequently,	the	isothermal	curves	are	cut	by	the	horizontal	lines	p	=	const	at
three	points	or	just	one.	For	the	higher	temperatures	(only	one	real	root),	the
shapes	of	the	curves	are	not	very	different	from	the	hyperbolae	of	the	ideal	gas.
At	lower	temperatures	(three	real	roots),	the	isothermal	curves	become
completely	different.	The	curve	corresponding	to	the	temperature	at	which	the
three	roots	coincide	separates	the	two	cases.	It	has	an	inflection	point	with	a
horizontal	tangent.	These	are	the	critical	isothermal	and	the	critical	point,
respectively.

Figure	4.5	shows	the	van	der	Waals	isothermal	curves.	Comparison	with	the
empiric	examples	of	Fig.	4.3	shows	that,	in	the	region	of	the	permanent	gas,
which	lays	above	the	critical	isothermal,	in	the	region	of	the	liquid,	and	in	the



region	of	the	super-heated	gas,	the	van	der	Waals	equation	follows	the
experimental	data	reasonably	well	(provided	the	constants	a	and	b	are	properly
chosen),	but	not	perfectly,	as	we	shall	see.	In	the	region	of	the	saturated	vapor,
under	the	coexistence	curve,	the	empirical	isothermal	curves	have	a	horizontal
segment,	while	the	van	der	Waals	are	S	shaped.

Fig.	4.5 	a	Isothermal	curves	of	the	van	der	Waals	equation.	b	An	isothermal	below	critical	temperature

Let	us	follow	an	isothermal	process	in	detail,	using	the	one	represented	in
Fig.	4.5b.	We	start	from	a	low	density	(large	volume).	In	segment	AB,	the
substance	is	over-heated	vapor.	As	we	have	mentioned,	the	behavior	of	the	van
der	Waals	curve	approximately	reproduces	the	real	one.	Below	B,	the	van	der
Waals	curve	continues	smoothly,	while	the	experimental	curve	shows	the
horizontal	segment	BF,	corresponding	to	the	condensation.

As	a	matter	of	fact,	the	first	part	of	the	segment	BC	is	also	experimentally
recheable.	Indeed,	provided	that	the	vapor	and	its	container	are	very	clean,	we
can	take	the	gas	pressure	above	the	saturated	vapor	pressure	(at	the	given
temperature)	without	condensation.	As	we	shall	see	in	Sect.	4.11,	the
condensation	process	needs	to	be	initiated	by	so-called	condensation	nuclei	,
which	are,	in	fact,	impurities	in	the	volume	or	roughness	of	the	walls.	However,
the	states	represented	by	the	segment	BC	are	not	stable	(they	are	said	to	be
metastable	);	any	small	perturbation	is	sufficient	to	take	the	system	on	the
horizontal	segment	suddenly	and	irreversibly:	the	two	phases	have	formed.

On	the	other	side	of	the	coexistence	curve,	the	segment	GF	represents	the
liquid.	We	now	start	from	a	high	pressure	state	on	GF	and	gradually	expand.	If
we	proceed	smoothly	enough,	we	are	able	to	experimentally	reach	part	of	the
segment	FE,	provided	the	liquid	and	the	walls	are	very	clean.	In	fact,	one	can
take	the	pressure	below	the	saturated	vapor	pressure	for	some	time	without	the
liquid	beginning	to	boil.	As	we	shall	see	in	Sect.	4.11,	boiling	is	also	triggered
by	the	presence	of	nuclei	(powder,	irregular	points	on	the	walls,	ions,	etc.).	The
segment	FE	corresponds	to	the	superheated	liquid	.	The	corresponding	states	are



metastable.	The	smallest	perturbation	causes	the	representative	point	to	“jump”
onto	the	horizontal	segment:	suddenly,	the	liquid	boils.

There	are	also	isothermal	curves	in	the	part	of	the	segment	FE	that	can	reach
negative	pressures.	In	these	states,	the	liquid	is	expanded	.	Some	of	these	states
can	be	reached,	for	example,	as	follow.	We	put	the	liquid	in	a	capillary	tube,
closed	at	one	extreme	and	open	at	the	other.	We	fix	the	capillary	horizontally	at	a
vertical	axis	passing	through	the	closed	extreme	and	put	the	system	in	rotation
with	a	high	angular	velocity.	In	the	reference	frame	of	the	rotating	capillary,	the
centrifugal	force	(pseudo	force	in	the	non-inertial	frame)	pulls	the	free	extreme
of	the	liquid	column	outside.	Cohesion	forces	forbid	the	column	from	breaking
(as	long	as	the	centrifugal	force	is	not	too	strong)	and	the	pressure	goes	negative.

The	segment	EC,	on	the	other	hand,	does	not	correspond	to	any	physically
achievable	state,	not	even	in	principle.	This	segment	is	indeed	anomalous,	in
contradiction	to	Le	Chãtelier’s	principle	,	because	pressure	would	increase	when
the	volume	increases.	Assume	an	equilibrium	state	to	exist	on	this	segment.
Then,	the	response	of	the	system	in	reaction	to	a	change	in	the	volume	would	be
to	enhance,	rather	than	to	decrease,	the	variation.	Indeed,	suppose	that	the
volume	of	a	small	portion	diminishes	momentarily	under	the	effect	of
fluctuations,	which	are	always	present	(the	molecules	in	the	small	volume	have
approached	each	other	for	a	moment	at	a	little	more	than	the	average	rate).	The
decrease	in	the	volume	implies	a	reduction	of	the	pressure,	which,	in	turn,	causes
a	further	reduction	of	the	volume,	and	so	on.	The	zone	becomes	smaller	and
smaller	indefinitely.	There	is	no	equilibrium,	and	the	state	is	so	completely
unstable,	they	cannot	exist.

When	temperature	increases,	the	three	roots	of	the	van	der	Waals	equation
approach	each	other	and	become	coincident	at	the	critical	temperature.	All	the
states	represented	by	the	van	der	Waals	equation	above	the	critical	temperature
are	reachable,	although	some	do	not	exist	below	it.	In	this	way,	the	van	der
Waals	equation	interprets	the	necessity	of	the	phase	separation	below	the	critical
temperature.

In	conclusion,	the	van	der	Waals	equation	gives	an	approximate	description
of	the	behavior	of	the	real	fluids.	It	does	that,	however,	only	in	a	first
approximation.	Let	us	compare	the	van	der	Waals	equation	predictions	with
reality.

The	two	parameters	a	and	b	in	the	van	der	Waals	equation	must	be
determined	through	the	experimental	data.	The	simplest	way	to	do	this	is	to	start
imposing	on	the	van	der	Waals	critical	isothermal	at	T	c	so	as	to	go	through	the
experimentally	determined	critical	point	(V	c	,	p	c	).	In	this	way,	we	determine



two	unknowns	of	a	problem	with	three	degrees	of	freedom.	We	(arbitrarily)	take
the	gas	constant	R	as	the	third	unknown	without	giving	it	a	priori	the	value	for
the	ideal	gases.

The	van	der	Waals	critical	isothermal	curve	is	the	solution	with	three	real
coincident	roots.	We	take	the	relations	amongst	them	from	a	book	of	algebra	and
have

	 (4.10)
We	now	invert	these	expressions	to	have	the	constants	a,	b,	and	R	as

functions	of	the	critical	variables	and	get

	 (4.11)
The	first	two	equations	give	the	constants	a	and	b	on	the	basis	of	the

experimental	values	of	the	molar	critical	pressure	and	volume.	The	third
equation	is,	contrastingly,	a	relation	amongst	the	critical	constants	of	any	fluid
that	should	satisfy	if	the	van	der	Waals	equation	is	correct.	Here,	we	find	the	first
failure	of	the	theory:	the	values	of	R	calculated	with	the	third	Eq.	(4.11)	are
different	for	different	fluids	and	different	from	the	gas	constant	(R	=	8.3	J	mol
−1	K−1).	For	example,	for	Nitrogen	and	Oxygen,	one	gets	values	around	6.5	J
mole−1	K−1,	for	Helium	and	Hydrogen,	values	around	6.7	J	mol−1	K−1,	for
Ammonia,	5.4	J	mol−1	K−1,	for	water,	4.1	J	mol−1	K−1,	and	for	Argon,	7.3	J	mol
−1	K−1.

Even	having	treated	R	as	a	free	parameter,	the	result	is	only	approximately
satisfactory.	Figure	4.6	shows,	as	an	example,	three	isothermal	curves	for	Argon;
the	true	ones	as	continuous	lines,	the	van	der	Waals	ones	(with	the	three
parameters	determined	as	above)	as	dotted	lines.	As	we	can	see,	even	outside	the
coexistence	curve,	the	theory	fails	by	several	percentage	points.



Fig.	4.6 True	(continuous)	and	van	der	Waals	(dotted)	isothermal	curves	for	Argon

Before	concluding,	we	observe	that	the	van	der	Waals	constants	a	and	b
depend	not	only	on	the	fluid	but	also	on	its	mass,	say	on	the	number	of	moles.
The	values	for	a	mole,	which	we	indicate	now	with	a	mol	and	b	mol	[as	they	are
indicated	in	Eq.	(4.11)],	depend	only	on	the	fluid.	These	are	the	values	you
usually	find	in	the	tables	of	the	manuals.	The	constant	b	is	the	total	volume	of
the	molecules,	and	consequently	is	proportional	to	the	number	of	moles.	From
the	van	der	Waals	equation,	one	also	sees	that	the	constant	a	is	proportional	to
the	square	of	the	number	of	moles.	Hence,	in	formulas,	for	n	moles,

	 (4.12)
The	units	of	the	van	der	Waals	constants	for	an	arbitrary	quantity	of	fluid	and

for	one	mole	are

	 (4.13)

4.4	 Joule-Thomson	Effect
In	Sect.	2.12,	we	saw	that	the	Joule	free	expansion	of	a	gas	takes	place	at	a
constant	temperature.	As	a	consequence,	the	internal	energy	of	an	ideal	gas	does
not	depend	on	the	volume.	As	we	have	already	noticed,	however,	the	Joule
experiment	has	a	low	sensitivity,	because	the	heat	capacity	of	the	gas	is	small
compared	to	the	heat	capacity	of	its	container.	The	conclusion	can	consequently
be	considered	as	valid	only	in	a	first	approximation.	As	already	mentioned,	Joule
himself,	along	with	W.	Thomson,	designed	and	performed	the	far	more	sensitive
experiment	that	we	shall	now	describe.

We	start	with	a	logically	simplified	scheme	of	the	Joule-Thomson	apparatus,
as	shown	in	Fig.	4.7.	It	consists	of	two	cylindrical	sections,	each	closed	by	a
piston	and	separated	by	a	porous	wall.	The	function	of	the	separator	is	to	let	the
gas	through	with	a	very	small	velocity,	when	there	is	a	pressure	difference
between	its	sides.	Let	us	call	these	pressures	p	1	and	p	2.	The	walls	and	the
pistons	are	thermal	insulators.

Fig.	4.7 The	Joule-Thomson	experiment.	a	initial	state,	b	final	state



Initially,	all	the	gas	is	in	the	left	container,	as	in	Fig.	4.7a.	Its	volume	is	V	1.
We	move	piston	1	to	the	right	to	push	the	gas	into	the	second	container,
constantly	keeping	pressures	p	1	and	p	2	on	the	pistons.	Finally,	all	the	gas	is	in
the	second	compartment	with	the	volume,	say,	V	2	and	the	pressure	p	2,	as	in
Fig.	4.7b.

In	both	compartments,	the	process	was	at	a	constant	pressure.	Consequently,
the	work	done	by	piston	1	to	push	the	gas	out	has	been	p	1	V	1;	while	the	work
done	by	piston	2	is—p	2	V	2.	There	has	been	no	heat	exchange,	because	the
system	is	isolated.	Hence,	the	total	work	is	equal	to	the	variation	of	the	internal
energy	U	2–U	1	of	the	gas:

	 (4.14)
which	we	can	write	as

	 (4.15)
or

	 (4.16)
where	H	=	U	+	pV	is	the	enthalpy	.	In	conclusion,	the	enthalpy	is	conserved
in	the	Joule-Thomson	experiment.

In	practice,	for	better	sensitivity,	the	operation	is	a	bit	different.	The	pistons
are	not	present.	Rather,	we	force	a	continuous	gas	flow	through	the	porous
separator,	maintaining	a	constant	pressure	difference	p	1–p	2	with	a	pump.	We
measure	the	temperatures	T	1	and	T	2	of	the	gas	on	the	two	sides	of	the	separator.
If	the	gas	were	ideal,	the	temperature	would	be	equal.	Indeed,	the	enthalpy	of	the
ideal	gas,	like	its	internal	energy,	depends	only	on	the	temperature.	The
experiment	shows	that	the	temperatures	are	different.	The	majority	of	the	gases,
around	STP,	cools	down	in	the	expansion,	namely	T	1	>	T	2.	Air	at	room
temperature,	for	example,	cools	0.3	°C,	expanding	from	p	1	=	2	atm	to	p
2	=	1	atm,	and	45	°C,	expanding	from	200	to	1	atm.	Hydrogen	and	oxygen	are
exceptional;	at	room	temperature,	they	heat	up	in	an	adiabatic	expansion.

To	be	precise,	all	the	gases	heat	up	in	Joule-Thomson	if	the	temperature	is
high	enough	and	cool	down	if	it	is	low	enough.	A,	pressure	dependent,	inversion
temperature	exists,	at	which	the	temperature	variation	in	the	Joule-Thomson
expansion	changes	sign.	For	hydrogen,	the	inversion	temperature	at	atmospheric
pressure	is	about	200	K,	while	for	helium,	it	is	about	40	K.

The	Joule-Thomson	effect	shows	that	the	enthalpy	of	the	real	gases,	and
consequently	their	internal	energy,	does	not	depend	on	their	temperature	alone,
but	also	on	their	volume.	This	is	a	consequence	of	the	attraction	of	the	van	der



Waals	forces	between	molecules.	When	the	volume	increases,	the	mean	distance
between	molecules	increases	as	well.	The	potential	energy	decreases	in	absolute
value,	and	the	internal	energy	increases,	being	the	potential	negative	energy.

The	Joule-Thomson	effect	is	used,	in	practice,	to	liquefy	gases.	The	gas	is
cooled,	pushing	it	through	a	narrow	orifice.	The	process	is	repeated	until	the
point	when	the	condensation	temperature	is	reached.	Hydrogen	and	helium	must
be	preliminary	cooled	with	a	service	gas	below	the	inversion	temperature.

4.5	 Internal	Energy	and	Entropy	of	Gases
The	Joule-Thomson	effect	has	shown	us	that	the	internal	energy	of	a	real	gas
depends	not	only	on	temperature	but	also	on	volume.	We	shall	now	see	how	the
equation	of	state	of	a	fluid	contains	the	information	on	the	dependence	or	not	of
its	internal	energy	on	the	volume.	Our	arguments	will	be	general,	valid	for	any
homogeneous	thermodynamic	system,	the	state	of	which	is	identified	by
pressure,	volume	and	temperature.	We	shall	find	a	general	expression	for	the
internal	energy	in	terms	of	measurable	quantities.	We	shall	then	apply	that
expression	to	the	ideal	gas	and	to	the	van	der	Waals	fluid.

Consider	such	a	thermodynamic	system	of	n	moles.	The	three	state	variables
are,	in	all	cases,	linked	by	a	state	equation,	which,	for	the	moment,	we	do	not
specify.	The	independent	variables	are	two.	We	choose	the	temperature	T	and	the
volume	V.	The	internal	energy	is	a	function,	U(T,V),	of	the	two	variables,	which
we	generally	do	not	know.	Its	total	differential	is

	 (4.17)
where,	as	usual,	the	subscript	near	the	derivative	symbol	specifies	the
variable	that	is	kept	constant.	We	know	that	the	derivative	with	respect	to	the
temperature	is

	 (4.18)
We	shall	now	find	that	the	other	partial	derivative,	the	derivative	with	respect

to	the	volume,	is

	 (4.19)
To	show	that,	we	start	from	entropy,	which	is	also	a	function	of	state,	of	the

two	variables	V	and	T,	S(V,	T).	Being	a	function	of	two	variables,	S	has	two
mixed	second	derivatives.	One	is	obtained	deriving	with	respect	to	V	first	and



then	with	respect	to	T,	the	other	proceeding	in	the	opposite	order.	Calculus
shows	that	the	two	derivatives	are	equal:

	 (4.20)
We	shall	use	this	relation	shortly.	The	total	differential	of	S	is

	 (4.21)

On	the	other	hand	 ,	and,	for	the	first	law,	 .	Using
Eq.	(4.17)	for	dU,	we	obtain

	 (4.22)
where	we	did	not	write	the	subscripts,	because,	in	this	section,	we	shall
always	use	the	variables	T	and	V.	Comparing	with	Eq.	(4.21),	we	have

	 (4.23)
We	now	take	the	partial	derivative	with	respect	to	V	of	the	first	equation	and

that	with	respect	to	T	of	the	second	and	make	them	equal.	Considering	that	the
mixed	partial	derivatives	of	U	are	also	equal	and	simplifying,	we	immediately
get	Eq.	(4.19).

We	shall	now	use	this	for	the	two	cases	in	which	we	have	the	equation	of
state	in	analytical	form,	the	ideal	gas	and	the	van	der	Waals	fluid.

Ideal	gas	.	The	equation	of	state	is

	 (4.24)
Equation	(4.19)	gives	us

	 (4.25)
We	have	found	what	we	already	knew,	that	the	internal	energy	of	the	ideal

gas	does	not	depend	on	the	volume.	We	have	learnt	that	this	fact	is	included	in
the	equation	of	state.

van	der	Waals	fluid	.	The	equation	of	state	is

	 (4.26)
We	proceed	as	in	the	case	of	the	ideal	gas.	We	take	the	derivative	of	the

pressure	with	respect	to	the	temperature	(at	constant	V)	and	we	substitute	the



result	along	with	p	as	given	by	Eq.	(4.26).	We	find

	 (4.27)
As	we	expected,	the	internal	energy	depends	on	the	volume	as	well.
We	want	now	to	find	the	expression	of	the	internal	energy.	We	start	by

integrating	Eq.	(4.27)	on	the	volume

	 (4.28)
The	quantity	C(T)	on	the	right	hand	side	is	the	integration	“constant”.	Notice

that	it	is	constant	relative	to	V,	but	not	necessarily	relative	to	T.	On	the	other
hand,

We	cannot	proceed	further	if	we	do	not	know	how	C	V	depends	on	the
temperature.	Let	us	assume,	as	usual,	that	we	can	consider	it	to	be	constant
(which	is	true	in	limited	temperature	intervals).	Under	this	hypothesis,	we	get

where	const	is	the	integration	constant.	In	conclusion,	the	internal	energy	of
the	van	der	Waals	fluid	is

	 (4.29)
Let	us	discuss	what	we	have	found.	The	energy	of	a	van	der	Waals	fluid	is

the	sum	of	two	terms.	The	first	term	is	equal	to	the	unique	term	of	the	ideal	gas.
As	we	shall	see	in	Chap.	5,	in	both	cases,	it	is	the	kinetic	energy	of	the
molecules,	which	is	proportional	to	the	absolute	temperature.	The	second	term	is
negative	and	inversely	proportional	to	the	volume.	It	includes	the	potential
energy	of	the	interaction	between	molecules,	and	is	not	present	in	the	ideal	gas,
in	which	the	interaction	between	molecules	is	neglected.

Let	us	now	find	the	expressions	for	the	entropy.	We	already	know	it	for	the
ideal	gas	(Eq.	3.32).	The	entropy	difference	between	state	f	and	state	i	is

	 (4.30)
For	the	van	der	Waals	fluid,	we	proceed	as	we	did	for	the	ideal	gas	in	Sect.	3.

7.	For	a	reversible	process	from	i	to	f,	we	have



The	total	differential	of	the	internal	energy	is

The	elementary	work	for	the	equation	of	state	Eq.	(4.26)	is

We	substitute	and	simplify,	obtaining

Integrating	this	expression,	we	get

	 (4.31)
The	expression	is	very	similar	to	that	of	the	ideal	gas.	The	only	difference	is

that	the	volumes	diminished	by	the	covolume	appear	in	place	of	the	volumes.
This	takes	into	account	the	fact	that	the	volume	occupied	by	the	molecules	is	not
available.	Notice	that	the	term	a/V	2,	which	takes	into	account	the	interaction
between	molecules	in	the	van	der	Waals	equation,	does	not	have	any	effect.	The
entropy	does	not	change	when	one	introduces	the	intermolecular	force.	The
microscopic	interpretation	that	we	shall	discuss	in	Sect.	5.11	will	explain	this
effect	too.

4.6	 Clapeyron	Equation
In	Sect.	4.2,	we	saw	that	the	vapor-liquid	phase	transition	of	a	substance	at	a
given	pressure	takes	place	at	a	certain	temperature.	In	a	closed	container,
maintained	at	constant	temperature,	with	no	other	gas	present,	the	vapor	above
the	free	surface	of	the	liquid	naturally	reaches	the	pressure	at	which	the	two
phases	are	in	equilibrium:	the	saturated	vapor	pressure	at	that	temperature.	The
same	is	true	for	the	other	transitions	between	aggregation	phases;	they	are	in
equilibrium	at	a	given	temperature	only	at	a	certain	pressure.	In	an	equivalent
manner,	we	can	say	that	the	aggregation	phase	transitions	take	place	at	a
constant,	well-defined	temperature,	once	the	pressure	has	been	fixed.	As	we
have	seen	in	the	case	of	vaporization,	throughout	the	aggregation	phase
transition,	a	certain	quantity	of	heat	is	absorbed	by,	or	delivered	to,	the



substance.	These	quantities	are	called	latent	heats	of	vaporization	,	fusion	and
sublimation	,	for	the	liquid-vapor,	the	solid-liquid	and	solid-vapor	phase
transitions.	The	latent	heats	are	specific	if	referred	to	a	kilogram,	molar	if
referred	to	a	mole.	Notice	that	by	solid	phase,	we	mean	the	crystalline	phase.
Amorphous	solids	like	wax,	black	tar,	glass,	etc.,	are	not	really	solids,	but	liquids
with	extremely	high	viscosity.	These	materials	become	softer	and	softer	with
increasing	temperature.	There	is	no	latent	heat	in	these	cases.

For	completeness,	we	mention	that	additional	phases	exist	along	with	the
aggregation	phases.	Some	substances	can	crystallize	in	different	forms,	which
are	called	allotropic	phases	.	Allotropy	is	a	rather	common	phenomenon.	For
example,	carbon	has	four	allotropes:	the	diamond	(in	which	the	lattice	is
tetrahedral),	the	graphite	(in	which	the	carbon	atoms	are	arranged	in	sheets	of
hexagonal	cells),	the	grapheme	(a	single	graphite	sheet)	and	fullerene	(in	which
the	atoms	are	in	a	closed	surface	at	the	vertices	of	20	hexagons	and	12
pentagons,	as	in	a	soccer	ball).	Another	example	is	ice,	of	which	nine	allotropic
phases	are	known.	Latent	heats	also	exist	for	the	transitions	between	two
allotropic	phases.

The	phase	transitions	usually	take	place	at	constant	pressure.	Consequently,
the	heat	corresponding	to	the	transition	between	phases	1	and	2,	Q	12,	is	equal	to
the	enthalpy	difference	between	the	two	states.	For	this	reason,	the	latent	heats
are	also	called	latent	enthalpies	.	Indeed,	we	have	

,	which	is	also

	 (4.32)
The	enthalpy	being	a	function	of	state,	the	heat	exchange	in	the	opposite

phase	transition	is	equal	and	opposite,	namely

	 (4.33)
We	shall	now	find	a	relation	between	the	derivative	of	the	equilibrium

pressure	with	respect	to	temperature,	the	latent	heat	and	the	change	of	volume	in
the	corresponding	transition.	The	equation	holds	for	any	transition	between	any
pair	of	aggregation	phases.	It	was	found	in	1834	by	Benoît	Paul	Émile
Clapeyron	(France,	1799–1864)	and	is	called	the	Clapeyron	equation	.	It	was
later	rediscovered	by	R.	Clausius	in	1857,	and	is	sometimes	called	the
Clapeyron-Clausius	equation.

To	be	concrete,	we	consider	the	liquid	to	vapor	transition.	Figure	4.8	shows
two	isothermal	curves,	one	at	T	and	one	at	the	infinitesimally	higher	temperature
T	+	dT.



Fig.	4.8 Two	isothermal	curves	in	the	liquid-vapor	transition	at	infinitesimally	small	temperature
difference

We	consider	a	unit	mass,	1	kg,	of	the	substance.	Its	volume	is	the	specific
volume	.	In	the	initial	state,	it	is	liquid	(point	A	in	the	figure)	at	the	saturated
vapor	pressure,	in	thermal	contact	with	a	bath	at	temperature	T.	We	deliver	heat,
and	the	fluid	starts	to	evaporate,	at	constant	pressure.	The	system	has	two
phases,	liquid	and	vapor,	in	equilibrium.	The	representative	point	in	the	diagram
moves	along	the	line	AB.	When	it	is	in	B,	the	absorbed	heat	is	Q	12.

Once	the	system	is	in	B,	we	move	it	into	contact	with	a	bath	at	the
temperature	T	+	dT.	The	state	is	point	C	in	the	figure.	We	now	subtract	heat,
moving	the	point	to	D.	This	is,	again,	an	isobaric	transition	at	the	saturated	vapor
pressure	p	+	dp	corresponding	to	T	+	dT.	We	close	the	cycle	by	taking	the
system	back	to	T.	We	performed	all	the	processes	reversibly.

The	process	can	be	considered	a	Carnot	cycle	.	Indeed,	it	is	composed	of	two
isothermals	(AB	and	CD)	and	the	two	other	processes	(BC	and	DA).	Rigorously
speaking,	the	latter	are	not	necessarily	adiabatic.	However,	the	corresponding
exchanged	heats	are	infinitesimal,	the	temperature	difference	being	infinitesimal,
and	can	be	neglected	in	comparison	with	the	finite	heats	exchanged	in	the
isothermal	transformations.	The	efficiency	is	consequently	dT/T.

The	work	is	given	by	the	area	of	the	cycle,	which	is	(V	2–V	1)dp,	higher	order
infinitesimals	apart,	where	V	1	is	the	volume	of	the	liquid	and	V	2	the	volume	of
the	vapor.	This	work	is	equal	to	the	absorbed	heat	Q	12	times	the	efficiency.	We
have

from	which	we	obtain

	 (4.34)
This	is	the	Clapeyron	equation	.



We	observe	that	the	volumes	of	the	phases	and	the	latent	heat	are	functions
of	the	temperature.	Consequently,	Eq.	(4.34)	is	generally	not	sufficient	to	know
the	function	p(T).	However,	it	contains	a	lot	of	information.	Let	us	see.

First,	we	observe	that	the	slope	of	the	equilibrium	curve	p(T)	is	inversely
proportional	to	the	difference	of	the	volumes	of	the	phases.	Consequently,	it	is
small	for	the	vaporization	(because	the	volume	of	the	vapor	is	much	larger	than
that	of	the	liquid)	and	very	large	for	the	fusion	(because	the	volumes	of	liquid
and	solid	do	not	differ	much).

Consider	the	important	example	of	water	.	At	T	=	273	K	(0	°C),	the	specific
volumes	of	the	solid	(ice	)	and	liquid	are	V	sol	=	1.09	×	10−3	m3/kg	and	V

liq	=	1.0	×	10−3	m3/kg,	very	close	indeed.	The	specific	fusion	heat	of	ice	at	273	K
is	Q	f		=	335	kJ/kg.	The	slope	of	the	equilibrium	curve	given	by	the	Clapeyron
equation	is,	then,	 .	This	value	agrees
very	well	with	the	experimental	one.	The	curve	is	extremely	steep.	For	example,
to	change	the	ice	fusion	temperature	by	one	degree	only,	we	must	change	the
pressure	of	140	atmospheres.	Notice	the	minus	sign.	It	means	that	the
equilibrium	pressure	diminishes	with	increasing	temperature.	This	behavior	is
exceptional	and	characteristic	of	water	(and	a	few	other	substances),
corresponding	to	the	fact	that	water	expands	when	cooling	(V	liq	−	V	sol	<	0)
between	0	and	4	°C	(see	Fig.	2.21b).

This	property	is	the	cause	of	the	regelation	phenomenon,	in	which	ice	melts
under	pressure	and	freezes	again	when	the	pressure	is	reduced.	Regelation	helps
the	glaciers	to	flow	under	the	effect	of	their	weight.	Consider,	for	example,	a
narrow	in	the	valley	of	the	glacier.	The	pressure	in	the	ice	near	the	bottom	in
contact	with	the	rocks	of	the	narrow	is	particularly	high	due	to	the	weight	of	the
upstream	part	of	the	glacier.	The	fusion	temperature	is	consequently	lower	than
the	ice	temperature,	which	might	be	around	−10	°C,	and	some	ice	melts.	The
resulting	water	flows	beyond	the	narrow,	where	the	pressure	is	lower,	and
refreezes.	The	glacier	can	flow	in	its	bed,	overtaking	curves	and	narrows
somewhat,	as	if	it	were	plastic.

We	can	make	a	qualitative	demonstration	looping	a	thin	metal	wire	over	an
ice	block	and	attaching	two	heavy	metallic	weights	to	its	ends.	The	weights	have
two	functions.	They	give	a	tension	to	the	wire,	which	exerts	a	constant	pressure
on	the	ice,	and	they	act	as	heat	reservoirs	providing	the	melting	heat,	through	the
conductive	wire.	Under	pressure,	the	ice	under	the	wire	melts;	the	wire	descends
a	bit	through	the	resulting	water,	which	refreezes	behind	the	wire,	and	so	on.	The
result,	after	several	minutes,	is	that	the	wire	has	passed	through	the	ice,	leaving



the	ice	block	apparently	intact.
At	T	=	373	K	(100	°C),	the	volume	of	the	water	vapor	is	about	1600	times

the	liquid	volume	and,	for	a	kilo,	is	V	vap	=	1.7	m3/kg.	The	condensation	heat	at
373	K	is	Q	con	=	2250	kJ/kg.	The	Clapeyron	equation	gives	the	slope	of	the
equilibrium	pressure	as	 ,	in	good
agreement	with	the	experimental	value.	To	change,	for	example,	the	equilibrium
temperature	by	one	degree,	it	is	enough	to	change	the	pressure	by	3.5	hundredths
of	atmosphere.

Table	4.2	reports	the	fusion	temperatures,	in	°C,	of	the	molar	and	specific
fusion	heats	for	several	substances.

Table	4.2 	Fusion	temperature	and	specific	and	molar	latent	heats

Substance Fusion	temp.	(°C)Q	fm	(kJ	mol
−1) Q	f	(kJ	kg

−1)

Aluminum 658.5 10.68 395.6
Argon –190.2 1.21 30.4
Calcium 851 9.34 233.2
Cesium 28.3 2.09 15.5
Cobalt 1490 15.24 260
CO2 –57.6 7.95 180.9

Copper 1083 13.02 205.1
Hydrogen –259.25 0.12 57.8
Iodine 112.9 15.28 59.9
Iron 1530 14.9 266.7
Lead 327.3 5.12 24.7
Mercury –39 2.33 11.3
Nitrogen –210 0.72 25.7
NaCl 800 30.23 517.1
NaFl 992 29.31 697.9
Oxygen –218.8 0.45 13.8
Potassium 63.4 2.4 61.1
Silicon 1427 39.65 1410.9
Silver 961 11.3 104.7
Tin 231.7 7.2 60.3
Tungsten 3387 35.25 191.8
Water 0 6.01 335.0



4.7	 Vaporization
The	Clapeyron	equation	for	vaporization	of	one	mole	of	fluid	is

	 (4.35)
where	Q	vap	is	the	molar	vaporization	heat	and	V	g	and	V	l	are	the	molar	volumes
of	the	gas	and	liquid	phases,	respectively.	The	three	quantities	are	functions	of
the	temperature.	For	the	liquid-gas	transformation,	it	is	possible	to	find	an
approximate	expression	of	the	saturated	vapor	pressure	function	p(T).

We	have	already	noted	that	the	volume	of	the	liquid	is	usually	much	smaller
(a	few	per	mille)	than	the	volume	of	the	gas.	Consequently,	we	neglect	V	l	in	the
above	equation.	At	temperatures	substantially	lower	than	the	critical
temperature,	the	saturated	vapor	pressure	is	rather	low	and	the	vapor	behaves,	in
first	approximation,	as	an	ideal	gas.	In	this	approximation,	we	can	write	

.	Equation	(4.35)	becomes

	 (4.36)
The	next	approximation	is	to	consider	the	vaporization	heat	independent	of

temperature.	To	have	an	idea	of	its	variations,	consider	that,	for	example,	the
vaporization	heat	of	water	varies	by	about	10	%	between	0	and	100	°C.	In	these
approximations,	we	can	separate	the	variables	and	write

	 (4.37)

which	is	immediately	integrated	into	 	and,	taking	the

exponentials,

	 (4.38)
where	C	is	now	the	integration	constant.	Notice	that	T	is	in	the	denominator
of	the	negative	exponent.	The	saturated	vapor	pressure	increases	very	rapidly	in
temperature	(and	exponentially	decreases	with	the	inverse	of	the	temperature).
We	shall	learn	the	physical	reason	for	that	in	Chap.	5.

Here,	we	observe	that	the	molecules	in	a	liquid	are	subject	to	the	van	der
Waals	forces,	which	are	practically	irrelevant	in	the	vapor.	This	means	that,	in
the	vaporization	process,	work	must	be	done	against	these	forces	to	bring	each
molecule	from	the	liquid	to	the	vapor.	This	work	is	equal	to	the	potential



difference	of	the	molecule	in	the	vapor	and	in	the	liquid,	which	is	the	molar
vaporization	heat	divided	by	the	Avogadro	number	Q	vap/N	A	.	Then,	by
measuring	Q	vap,	we	can	evaluate	the	depth	of	the	minimum	of	the	van	der	Waals
potential	.	One	obtains	values	ranging,	for	the	different	gases,	from	a	few	tenths
of	an	electronvolt	to	a	few	electronvolt.	These	are	the	values	we	mentioned	in
Sect.	4.1.

Table	4.3	gives	the	vaporization	temperatures	and	specific	heats	for	several
substances.

Table	4.3 Vaporization	temperatures	T	v	and	heats	Q	ev	of	several	substances

Substance T	v	(°C) Q	ev	(kJ	kg
−1)

Water 100 2250
CO2 –60 365

Ammonia –33.4 1369
Ethyl	alcohol 78.3 854
Benzene 80.2 395
Oxygen –182.9 213
Nitrogen –195.6 199
Hydrogen –252.8 452
Helium –268.6 25

4.8	 Pressure-Temperature	Dyagrams
The	Clapeyron	equation	Eq.	(4.34)	expresses	the	derivative	of	the	equilibrium
pressure	p(T)	between	any	two	phases.	We	shall	now	discuss	more	of	its
properties	in	the	plane	p,T,	as	in	Fig.	4.9.

Fig.	4.9 The	coexistence	curves	between	the	aggregation	phase	couples

Consider	Fig.	4.9	a.	The	three	branches	of	the	diagram,	1,	2	and	3	in	the



figure,	represent	the	function	p(T)	for	the	equilibrium	pressure	between	the	three
pairs	of	phases.	We	repeat	that	the	substance	under	study	must	be	in	a	closed
container,	with	no	other	foreign	substance,	air,	in	particular,	being	present.
Otherwise,	the	vapor	pressure	is	the	partial	pressure	of	the	mixture,	while	the
liquid,	or	the	solid,	are	at	the	total	pressure,	which	is	the	sum	of	the	vapor	and
extraneous	gas	pressures.	Let	us	consider	the	state	A	in	Fig.	4.9b,	where,
according	to	the	diagram,	the	substance	is	completely	liquid.	In	practice,	the
piston,	with	which	we	exert	the	pressure	(p	A	),	must	be	in	direct	contact	with	the
liquid.	Indeed,	assume	that	some	air	is	present	between	the	free	surface	of	the
liquid	and	the	piston,	which	still	exerts	the	(total)	pressure	p	A	.	Under	these
conditions,	part	of	the	liquid	vaporizes.	The	equilibrium	between	the	two	phases
is	reached	when	the	(partial)	pressure	of	the	vapor	is	the	saturated	vapor	pressure
at	the	existing	temperature	T	A	(p	sv)	in	the	figure.	The	two	phases	are	in
equilibrium	at	a	total	pressure	different	from	the	saturated	vapor	pressure.

Consider	now	branch	1	in	Fig.	4.9a,	which	is	the	curve	of	the	saturated	vapor
pressure	as	a	function	of	temperature.	We	have	found	the	approximate
expression	of	this	function	of	Eq.	(4.38).	When	the	temperature	increases,	the
saturated	vapor	pressure,	and	consequently	the	density,	grows	very	rapidly.	The
vapor	density	becomes	closer	and	closer	to	the	liquid	density.	When	the	state
reaches	the	critical	point,	the	vapor	has	the	same	density	as	the	liquid	and	the
two	phases	are	indistinguishable.	In	other	words,	the	liquid-vapor	equilibrium
curve	ends	in	the	critical	point	(K	in	the	figure).

Consider	two	states	at	the	same	temperature,	A	in	the	liquid	phase,	B	in	the
vapor	phase.	Figure	4.10a	shows	the	situation	in	the	p,T	plane,	Fig.	4.10b	in	the
V,	p	plane.	We	can	pass	from	A	to	B,	compressing	the	fluid	at	constant
temperature,	as	shown	by	the	continuous	line	in	Fig.	4.10a.	During	the	process,
the	two	phases	separate,	becoming	different	from	one	another.	However,	we	can
go	from	A	to	B	in	another	way	too,	which	is	the	dotted	curve	in	Fig.	4.10a	and	b.
We	start	by	compressing	the	gas,	increasing	its	temperature,	in	a	way	that	does
not	liquefy	it.	Once	we	are	above	the	critical	temperature,	we	continue	the
compression,	but	now	decreasing	the	temperature.	In	this	way,	as	shown	in	the
figures,	we	go	around	the	critical	point.	In	this	process,	there	is	no	sharp	change
of	phase;	the	substance	always	remains	homogeneous	and	it	is	impossible	to
determine	where	the	vapor	became	liquid.



Fig.	4.10 Two	processes	for	the	condensation	from	state	A	to	state	B.	a	on	the	p,	T	plane,	b	on	the	p,	V
plane

An	important	difference	between	the	solids	(crystals)	and	the	liquids	is	the
anisotropy	of	the	crystals.	In	a	solid,	as	opposed	to	a	liquid,	privileged	directions
exist.	Consequently,	the	transition	between	liquid	and	solid	cannot	in	any	way
take	place	continuously	as	is	the	case	between	vapor	and	liquid.	As	a
consequence,	no	critical	point	exists	on	the	solid-liquid	coexistence	curve.	The
curve	continues	indefinitely,	as	indicated	with	an	arrow	on	branch	2.	Also	notice
that,	as	already	discussed	in	Sect.	4.7,	the	liquid-solid	coexistence	curve	(branch
2)	is	much	steeper	than	the	liquid-vapor	curve	(branch	1).

In	Fig.	4.10,	the	liquid-solid	coexistence	curve	is	represented	in	the	most
common	situation	of	bodies	that	expand	when	melting.	As	we	noticed	in	Sect.
4.6,	the	opposite	is	true	in	a	few	cases,	such	as	water	,	for	which	the	density	of
the	solid	is	smaller	than	the	density	of	the	liquid.	The	slope	of	the	coexistence
curve	is	opposite,	as	in	Fig.	4.11.

Fig.	4.11 The	coexistence	curves	for	water

The	equilibrium	state	between	the	three	phases	must	lay	contemporarily	on
all	the	coexistence	curves.	The	three	curves	intersect	at	a	point,	which	is	the
triple	point	,	P	t	in	the	figures.	The	equilibrium	of	the	three	phases	exists	only	at
well-defined	values	of	the	three	variables:	temperature,	pressure	and,	for	a	given



mass,	volume.
Consider	the	example	of	water.	The	equilibrium	between	ice,	water	and

water	vapor	is	only	at	a	pressure	of	about	a	600	Pa	(about	6	thousandths	of	an
atmosphere)	and	the	temperature	of	+0.01	°C.	The	temperature	of	the	triple
points	being	completely	determined,	in	particular,	independent	of	pressure,	they
are	extremely	useful	as	standards	of	the	temperature	scale.	As	we	have	seen,	the
temperature	unit,	the	kelvin	,	is	defined	by	fixing	the	water	triple	point
temperature	at	273.16	K.

Consider	now	the	solid-vapor	coexistence	curve	,	branch	3	of	the	diagrams.
At	temperatures	lower	than	the	triple	point	temperature	(or	a	little	less	than	that
for	water),	the	liquid	phase	does	not	exist.	Heating	(giving	heat	to)	the	solid,	it
passes	directly	into	the	vapor	phase,	and	vice	versa	when	taking	out	heat.	The
former	process	is	called	sublimation	,	the	latter	deposition	.

For	example,	the	triple	point	of	carbon	dioxide	is	at	the	pressure	of	510	kPa
(about	5.1	atm)	and	at	the	temperature	of—56.6	°C.	Under	normal	conditions,
the	solid	CO2	does	not	melt,	it	sublimates.	For	this	reason,	it	is	called	dry	ice	.
Similarly,	snow	and	ice	in	the	glaciers	and	elsewhere	sublimate	when	the
atmospheric	temperature	is	below	0	°C.	An	example	of	deposition	is	the
formation	of	snow	in	the	clouds	and	frost	on	the	ground.

For	the	same	reasons	discussed	for	the	liquid-solid,	continuous	transition
between	vapor	and	solid	phases	is	impossible.	The	solid-vapor	coexistence	curve
does	not	have	an	end	point.

4.9	 Surface	Tension
Up	to	now,	we	have	studied	three-dimensional	thermodynamic	systems.	The
relevant	geometrical	quantity	was	the	volume.	The	free	surfaces	of	the	bodies
are	the	sites	of	another	class	of	phenomena,	the	surface	phenomena	,	which	we
shall	study	in	this	section	and	the	following	two.

Consider,	for	example,	water	in	a	glass,	filled	close	but	not	all	the	way	to	the
rim.	Its	volume	is	limited	by	an	upper	surface	in	contact	with	the	air,	which	is
almost	a	horizontal	plane,	but	not	completely	so,	as	we	shall	soon	see,	and	by	the
lateral	and	bottom	surfaces	that	are	in	contact	with	the	glass.	The	water-glass	and
the	water-air	contact	surfaces	intersect	along	a	line,	which	is	a	circle	in	this	case.
Similarly,	the	air	volume	in	the	glass	above	the	water	is	limited	by	the	same
water-air	contact	surface	and	by	a	glass-air	contact	surface.	The	three	contact
surfaces	meet	in	the	intersection	circle.

In	the	surface	phenomena,	only	the	molecules	near	enough	to	the	surfaces



intervene.	Surface	phenomena	are	important	in	two	different,	and	correlated,
cases	that	we	shall	now	discuss:	when	a	liquid	is	in	a	capillary	tube	(a	tube	of
millimetre	scale	diameter)	and	for	a	drop	on	a	solid	surface	.

The	conditions	of	a	molecule	at	a	distance	from	the	surface	smaller	than	the
molecular	action	radius	are	different	from	those	in	the	bulk.	The	latter	are
surrounded	by	equal	molecules	in	all	directions,	the	former	only	on	one	side.
Suppose	now	that	we	want	to	bring	a	molecule	located	in	the	bulk	of	the	volume
to	the	surface.	We	shall	need	to	perform	a	positive	work	against	the	resultant	of
the	van	der	Waals	forces,	which	is	directed	inside.	This	work	is	equal	to	the
difference	between	the	energy	of	the	molecule	on	the	surface	and	in	the	bulk	of
the	fluid.

We	have	already	discussed	this	issue	in	Sect.	4.3;	let	us	repeat	the	argument
more	precisely,	also	taking	into	account	the	molecules	of	the	medium	that	limits
the	fluid	(for	example,	the	walls	of	the	container	or	the	air).	Figure	4.12	shows
the	molecular	action	sphere	of	a	molecule	on	the	surface;	half	of	the	sphere
contains	molecules	from	the	fluid,	half	molecules	from	the	external	medium,
which	are	generally	different	and	have	different	density.	The	force	on	the
molecule	is	the	resultant	of	the	forces	of	the	two	types	of	molecules.	To	take	a
molecule	to	the	surface,	we	must	work	against	this	resultant.	Consequently,	the
surface	energy	of	a	molecule	depends	on	both	media.

Fig.	4.12 Cartoon	showing	the	van	der	Waals	forces	exerted	by	the	molecules	of	two	media	in	contact	on	a
surface	molecule	and	their	resultants

The	number	of	molecules	on	a	surface,	or	better	yet,	in	a	thin	layer	one
molecular	action	radius	thick,	of	area	A	is	proportional	to	A.	And	so,	obviously,
is	their	energy,	which	is	called	surface	energy	and	which	we	indicate	with	U	sur,
writing



	 (4.39)
The	proportionality	constant	τ	is	the	surface	energy	per	unit	area	and	is	called

surface	tension	.	It	depends,	as	we	mentioned,	on	both	media	in	contact	and	is	a
function,	in	general	decreasing,	of	temperature.

The	presence	of	the	surface	energy	is	evident	in	the	drops.	A	small	quantity
of	liquid	spontaneously	takes	a	spherical	shape,	because	this	is	the	shape	that
minimizes	the	surface	area	for	a	given	volume	(of	liquid).	As	a	matter	of	fact,
drops	are	perfectly	spherical	only	in	absence	of	other	forces,	in	particular,	of
weight.	As	an	illustration,	this	is	what	happens	in	a	spacecraft.	The	shape	of	a
drop	of	mercury,	for	example,	lying	on	a	plane	is	somewhat	flattened.	This	is
now	the	condition	of	minimal	total	energy,	which	is	the	sum	of	the	surface	and
volume	(weight)	energies.	We	shall	come	back	to	this	phenomenon	later	on.
Here,	we	observe	that	it	follows	from	the	above	considerations	that	the	surface
energy	cannot	be	negative.	If	that	were	the	case,	two	media	in	contact	could	not
exist	separately;	the	separation	surface	would	tend	to	increase	indefinitely	and
the	two	media	would	mix	completely.

We	now	consider	a	simple	experiment	showing	the	action	of	the	surface
tension.	Figure	4.13	represents	a	small	metal	frame	with	three	fixed	sides;	one	of
the	short	sides	is	free	to	slide.	We	momentarily	block	the	mobile	side	and	dip	the
frame	in	soapy	water.	If	we	take	it	out	smoothly	we	are	able	to	have	a	film	inside
the	frame	like	those	of	the	soap	bubbles.	We	can	evaluate	the	order	of	magnitude
of	the	thickness	of	the	film,	which	is	clearly	very	thin,	with	a	simple	argument.
The	beautiful	colors	of	the	soap	bubbles	are	due	to	the	interference	of	light
reflected	at	the	forward	and	backward	surfaces	of	the	film.	The	phenomenon	will
be	explained	in	the	4th	volume	of	the	course.	It	happens	when	the	thickness	of
the	film	is	on	the	order	of	half	a	wavelength,	which	is	a	few	hundredths	of
nanometers.	In	conclusion,	the	film	thickness	is	two	orders	of	magnitude	larger
than	the	molecular	action	radius.

Fig.	4.13 Measuring	the	force	on	a	side	of	a	soapy	water	film



If	we	now	unblock	the	mobile	side,	we	notice	the	presence	of	a	force	exerted
by	the	film,	which	tends	to	reduce	its	area	as	much	as	possible.	We	can	measure
this	force	by	inserting	a	spring	between	the	mobile	and	a	fixed	side,	as	in	the
figure,	and	measuring	its	stretch.	We	find	that	the	force	is	proportional	to	the
length	s	of	the	side:

	 (4.40)
We	have	introduced	the	factor	two,	because	the	soapy	water	film	has	two	free

surfaces,	one	on	each	side.	Consequently,	the	proportionality	constant	 	is	the
force	per	unit	length	tangent	to	the	film.

Let	us	now	move	the	mobile	side	by	an	infinitesimal	distance	dx,	increasing
the	total	free	surface	by	dA	=	2sdx.	The	work	to	be	done	against	the	force	F	is
equal	to	the	increase	in	the	surface	energy	due	to	this	increase	of	surface.	Notice
that	the	surface	increases	but	the	volume	of	the	liquid	remains	constant;	an
increasing	number	of	molecules	pass	from	the	interior	to	the	surface	of	the	film.
In	formulae,	we	have	 .	Hence,	it	is	just	 .

We	see	that	the	surface	tension	has	two	physical	meanings;	it	is	the	surface
energy	per	unit	area	and	the	tension	force	on	the	surface	per	unit	length.	This
force	is	present	at	all	the	surface	points,	not	only	on	the	borders.	It	is	the	two-
dimensional	analogue	of	the	pressure	in	a	fluid,	which	is	present	at	all	its	points,
not	only	on	the	surface.	On	the	borders,	the	surface	tension	force	is	directed
perpendicularly	toward	the	interior	(this	is	equivalent	to	saying	that	τ	>	0).

We	can	see	that	we	have	a	very	simple	experiment.	We	spread	a	film	of
soapy	water	on	a	metallic	frame.	We	lay	on	it	a	sewing	thread	the	ends	of	which
we	had	joined	together	to	make	a	loop	(see	Fig.	4.14a).	The	thread	forms	an
irregular	shape.	We	now	break	the	film	with	a	pin	inside	the	loop.	The	thread
immediately	becomes	a	circle	(see	Fig.	4.14b).	Indeed,	all	its	elements	are	pulled
by	the	surface	tension.	Before	the	film	was	broken,	they	were	pulled	by	equal
and	opposite	forces	on	both	sides.



Fig.	4.14 A	soapy	water	film	a	with	a	wire	loop,	b	after	breaking	the	film	in	the	loop

The	physical	dimensions	of	the	surface	tension,	on	the	basis	of	its	two
meanings,	are	of	an	energy	divided	by	an	area	or	of	a	force	divided	by	a	length,	

.
As	we	mentioned,	the	surface	tension	depends	on	the	two	media	in	contact.

However,	we	also	speak	of	surface	tension	of	one	liquid,	meaning	of	the	liquid
and	its	vapor.	The	surface	tension	of	a	liquid	decreases	with	increasing
temperature,	reaching	zero	at	the	critical	point.	Here,	we	know,	there	is	no
difference	between	liquid	and	vapor	and	no	separation	surface	can	exist.

To	get	an	idea	of	the	orders	of	magnitude,	at	20	°C,	the	surface	tension	of
water	is	73	mN/m,	of	mercury,	480	mN/m.	Table	4.4	gives	the	values	of	the
surface	tension	for	several	combinations	of	media	and,	for	the	water-air	pair,	at	a
number	of	temperatures.

Table	4.4 	Surface	tension	τ	for	several	combinations	of	media

Media T	(°C) τ	(mN/m)
Water-air 0 75.6

10 74.22
20 72.75
30 71.18
40 69.56
50 67.91
60 66.18
70 64.4
80 62.6
100 58.9

Benzene-Mercury 20 357



Benzene-Water 20 35
Water-Ethyl	ether 20 10,7
Water-Mercury 20 375
Argon	liquid-vapor –188 13.2
Hydrogen	liquid-vapor –255 2.31
Nitrogen	liquid-vapor –183 6.6
Oxygen	liquid-vapor –183 13.2
Ethyl	alcohol	liquid-vapor 20 17.01
Benzene-Air 20 28.88
Ethyl	alcohol	-Air 20 17
Ethyl	ether-Air 20 17

4.10	 Capillary	Phenomena
Consider	a	liquid	in	a	container;	let	us	stick	with	water	in	a	glass.	We	are	dealing
with	three	media,	the	solid	of	which	the	container	is	made	(medium	S),	the	liquid
(medium	L)	and	the	gas	or	vapor	above	the	liquid	(medium	G)	(glass,	water	and
air	in	the	example),	and	with	three	surfaces	separating	the	three	combinations	of
media.	We	shall	call	them	S	SL	,	S	SG	and	S	LG	.	We	observe	that	the	free	surface
of	the	liquid	is	not	flat	1	mm	or	so	near	its	border	(where	the	water	touches	the
glass)	but	slightly	deformed.	The	water	rim	is	higher	than	the	free	surface.	The
rim	is	called	the	meniscus,	specifically	the	concave	meniscus	,	because	it	rises.	It
is	shown	magnified	in	Fig.	4.15a.	For	mercury	in	glass,	the	rim	is	turned
downward,	and	is	called	the	convex	meniscus	(Fig.	4.15b.	Water	in	a	Teflon
container	behaves	in	the	same	way	as	mercury	in	glass;	its	meniscus	is	convex.

Fig.	4.15 	a	Concave	and	b	convex	menisci

The	border	of	the	liquid	is	the	curve	where	the	three	separation	surfaces	S	SL	,



S	SG	and	S	LG	meet.	It	cuts	the	plane	of	the	figures	at	point	O.	The	border	of	the
liquid	is	also	the	border	of	each	separation	surface.	Consequently,	along	each
segment	of	the	border,	the	forces	resulting	from	the	three	surface	tensions	are
present.	They	are	all	perpendicular	to	the	segment,	each	on	the	plane	of	the
corresponding	surface	toward	the	inside.	The	magnitudes	of	the	three	forces	per
unit	length	are	the	surface	tensions	relative	to	the	two	media	in	contact	(τ	SL	,	τ	SG
,	τ	LG	).	This	situation	is	shown	in	Fig.	4.15.	The	shapes	of	the	solid-liquid	and
solid-gas	surfaces	S	SL	and	S	SG	are	a	priori	defined	because	medium	1	is	solid,
while	the	shape	of	the	liquid-gas	interface	S	LG	is	not	because	both	media	are
deformable.	This	surface	adjusts	itself	at	the	angle	with	the	solid	wall	θ	at	which
the	equilibrium	of	the	forces	is	reached.	This	is	called	the	contact	angle	.

At	equilibrium,	the	component	of	the	resultant	of	the	three	tension	forces
tangent	to	the	solid	surface	must	be	zero.	Otherwise,	the	border	would	move	up
or	down.	Notice	that	the	normal	component	can	be	and	is	different	from	zero,
being	equilibrated	by	the	adhesion	forces.

In	formulae,	we	have	 ,	or

	 (4.41)
This	is	the	Young	equation	,	after	Thomas	Young	(UK,	1773–1829),	who

established	it	in	1804.	One	sees	how	the	contact	angle	depends	on	all	three	pairs
of	media.	Somewhat	surprising,	it	also	depends	on	τ	SG	,	the	solid-gas	(glass-air
in	the	example)	surface	tension.	To	understand	the	reason	for	this,	let	us	find	the
Young	equation	in	a	different	way,	using	the	virtual	works	principle	.

Consider	each	separation	surface	in	turn.	Let	us	start	with	the	liquid-solid
interface	(S	SL	).	The	work	needed	to	take	a	molecule	from	inside	the	liquid	to
the	contact	surface	with	the	solid	depends	on	the	nature	of	both	media,	namely
on	the	van	der	Waals	forces	of	the	molecules	of	both	of	them.	The	surface	energy
per	unit	area	of	S	SL	,	which	is	the	surface	tension	τ	SL	,	consequently	depends	on
both	as	well.	Similarly,	the	work	needed	to	take	a	molecule	from	inside	the	gas
to	the	contact	surface	with	the	solid,	namely	to	build	S	SG	,	depends	on	the	gas
and	the	solid.	And	so	it	is	for	τ	SG	.	The	liquid-gas	interface	S	LG	is	a	bit	more
complicated.	In	this	case,	to	build	a	piece	of	surface,	we	must	take	molecules
from	inside	the	liquid	to	the	surface	as	well	as	gas	molecules	from	inside	the	gas
to	the	surface,	because	both	must	increase.	The	surface	energy	per	unit	area	τ	LG
includes	both	works.	Note	that	a	similar	problem	did	not	exist	in	the	other	two
interfaces	because	the	solid	molecules	did	not	move.



We	now	use	the	virtual	works	principle	to	establish	the	equilibrium
conditions	of	the	meniscus.	Let	z	be	a	coordinate	vertically	directed	upward
through	point	O	in	the	figure.	Consider	a	segment	of	the	border	of	length	Δl	near
O	and	its	virtual	displacement	dz.	The	corresponding	variations	of	the	three
surfaces	are	 ,	 	and	 .	Notice	that,	in
particular,	the	area	of	the	contact	surface	of	the	gas	with	the	solid	wall	varies	too;
hence,	the	energy	of	the	S	SG	surface	varies.	This	explains	why	the	equilibrium
conditions	must	include	τ	SG	.	The	necessary	condition	for	equilibrium	is	that	the
total	virtual	work	be	zero,	namely	 .	This
immediately	gives	Eq.	(4.41).

We	now	discuss	the	principal	consequences	of	the	Young	equation	for	the
cases	of	the	menisci	(Fig.	4.15)	and	of	a	liquid	drop	on	a	solid	surface
(Fig.	4.16).	We	call	the	ability	of	the	liquid	to	maintain	contact	with	the	solid
surface	wetting.	If	the	solid-gas	surface	energy	is	larger	than	that	of	the	solid-
liquid,	τ	SG		>	τ	SL	,	then	cos	θ	>	0	and	the	angle	θ	is	acute.	We	talk	of	high
wettability.	The	meniscus	is	concave,	as	in	Fig.	4.15a.	A	drop	of	liquid	on	a	solid
surface	has	a	shape	as	shown	in	Fig.	4.16a.	The	extreme	case,	cos	θ	=	1,	is	called
complete	wetting	.	In	Fig.	4.16b,	the	wetting	is	almost	complete.

Fig.	4.16 A	drop	on	a	solid	surface	in	air	with	wettability	a	high;	b	almost	perfect;	c	low

If	the	solid-gas	surface	energy	is	smaller	than	the	solid-liquid	surface	energy,
τ	SG		<	τ	SL	,	then	cosθ	<	0,	and	the	angle	θ	is	obtuse.	We	talk	of	low	wettability.
The	meniscus	is	convex,	as	in	Fig.	4.15b;	the	form	of	the	drop	is	as	shown	in
Fig.	4.16c.	For	example,	the	mercury-glass	contact	angle	in	the	air	is	θ	~	150°.
The	extreme	case,	cos	θ	=	–1,	is	called	perfect	non-wetting.	Particularly
important	is	the	case	in	which	the	gas	is	air	and	the	liquid	is	water.	Solid	surfaces
are	called	hydrophobic	(from	the	Greek	words	for	“fearing	water”)	if	the	contact
angle	with	water	in	air	is	θ	>	90°,	and	hydrophilic	(from	the	Greek	for	“loving
water”)	if	θ	<	90°.

We	notice	that	the	Young	equation	assumes	a	perfectly	flat	and	rigid	solid
surface.	In	practice,	the	surface	tensions,	and	consequently	the	contact	angle,
strongly	depend	on	the	structure	of	the	surface	at	microscopic	and	nanoscopic



levels.	For	example,	the	water-glass	contact	angle	in	the	air	depends	on	the
treatment	of	the	glass	surface	and	on	the	purity	of	the	water.	Untreated	glass	is
hydrophilic	for	pure	water,	the	contact	angle	being	in	the	range	θ	=	25°–30°.	As
another	example,	Teflon	is	hydrophobic,	the	contact	angle	with	water	in	the	air
being	θ	~	110°.	The	study	of	these	properties	is	an	important	chapter	in
contemporary	research.	Microscopic	and	nanoscopic	architectures	are	used	by
nature	on	the	surfaces	of	vegetables	and	animals	and,	once	understood,	can	be
used	by	man	to	produce	new	products.	One	example	is	the	use	of	a	nano-
structure	to	minimize	the	droplet’s	adhesion	to	the	surface	(superhydrofobicity)
by	the	lotus	flower	(Nelumbo	nucifera	and	N.	lutea)	for	self-cleaning.	Water
droplets	do	not	remain	on	these	surfaces	stably.	They	spontaneously	roll	off	with
only	a	slight	tremble,	picking	up	and	removing	any	dust	particles	they	may
touch.	Water	striders	are	insects	using	superhydrofobicity	to	walk	on	water.
Figure	4.17	shows	a	gerridae	(Aquarius	paludum),	on	a	pond	surface.	The	insect
has	four	long	legs	used	to	walk	and	two	short	ones	to	catch	prey.	The	surfaces	of
the	long	legs	are	covered	with	specialized	tiny	hairs,	spaced	by	a	several
micrometres,	resulting	in	a	hydrophobic	surface.

Fig.	4.17 Aquarius	paludum.	Photo	of	Andrej	Gogala,	by	kind	permission

As	we	saw	in	Sect.	1.4,	a	consequence	of	the	Stevin	law	is	that	the	free
surfaces	of	a	homogeneous	liquid	in	communicating	vessels	in	equilibrium	have
equal	heights.	This	is	not	true	if	one	of	the	containers	is	a	capillary,	namely	if	its
section	is	small,	on	the	order	of	one	millimeter.	Consider	two	communicating
vessels,	one	capillary	and	one	not.	If	we	fill	them	with	a	wetting	liquid,	the	level
of	the	free	surface	in	the	capillary	is	higher	than	the	level	in	the	wide	vessel.
Contrastingly,	if	the	liquid	does	not	wet,	the	level	of	the	free	surface	in	the



capillary	is	lower.	This	phenomenon,	called	capillary	ascension	,	is	shown	in
Fig.	4.18.	It	is	found	that	the	level	difference	h	is	larger	the	smaller	the	diameter
of	the	capillary.	Let	us	try	to	understand	these	phenomena.

Fig.	4.18 Capillary	ascensions.	a	Concave	meniscus,	b	convex	meniscus

Let	us	start	by	considering	a	spherical	water	drop	of	radius	r	in	air.	The
surface	tension	tends	to	reduce	the	free	surface	as	much	as	possible	(to	minimize
the	surface	energy)	and	consequently	the	volume.	The	pressure	inside	the	drop
becomes	higher	than	the	pressure	of	the	air	outside.	Let	us	call	p	dif	the
overpressure,	namely	the	difference	between	the	internal	and	external	pressures.
To	calculate	this	quantity,	we	observe	that	the	work	done	by	the	surface	forces	to
decrease	the	free	surface	by	a	generic	dS	is	τ	LG	dS,	where	the	water-air	surface
tension	is.	The	same	work	can	be	expressed	as	the	work	to	reduce	the	volume	by
dV,	namely	p	dif	dV.	In	formulae,	we	have

	 (4.41)
The	surface	of	the	spherical	drop	of	radius	r	is	S	=	4πr	2,	and	its	volume	is

V	=	4π	r	3/3.	Differentiating	and	using	Eq.	(4.41),	we	obtain

	 (4.42)
which	is	called	the	capillary	pressure	.	We	can	also	say	that	Eq.	(4.42)	gives
the	overpressure	under	a	surface	of	radius	r	relative	to	the	pressure	under	a	flat
surface	(r	=	∞).	The	argument	is	still	valid	for	a	bubble	of	gas	in	liquid;	the
pressure	is	larger	in	the	bubble	than	in	the	liquid.	In	general,	there	is	an	over-
pressure	under	any	concave	surface.	Contrastingly,	there	is	an	under-pressure
under	a	convex	surface.	Equation	(4.42)	is	valid,	in	absolute	value,	in	both	cases.
Note	that	p	dif	is	inversely	proportional	to	the	curvature	radius.	As	we	have
already	noticed,	when	r	→	∞,	when	the	surface	becomes	flat,	the	pressure
difference	goes	to	zero.	The	equilibrium	pressures	on	the	two	sides	of	a	flat
separation	surface	are	equal.	The	tendency	of	the	surface	tension	to	reduce	the
surface	exists	in	this	case	as	well,	but	the	forces	are	parallel	to	the	surface,	with



no	component	towards	the	interior.
To	get	an	idea	of	the	orders	of	magnitude,	consider	an	air	bubble	in	pure

water	at	25	°C.	The	surface	tension	is	τ	LG		=	72	mN/m	(see	Table	4.2).	The
overpressure	in	a	bubble	of	2r	=	1	mm	diameter	is	negligible	(288	Pa),	but	it	is
already	96	kPa	(i.e.,	almost	one	atmosphere)	for	a	diameter	2r	=	3	µm	and
960	kPa	(almost	10	armpsphere)	2r	=	0.3	µm.

Let	us	come	back	to	the	capillary	ascensions.	Observations	show	that,	when
the	radius	a	of	the	capillary	is	small	enough,	the	free	surface	of	the	liquid	is	a
spherical	cap	(“meniscus”	comes	from	the	Greek	for	crescent).	The	geometrical
relation	between	the	radius	of	the	cap	and	a	is	immediately	found	looking	at
Fig.	4.19	(for	a	concave	meniscus),	namely

Fig.	4.19 Geometry	of	a	concave	meniscus	in	a	capillary

	 (4.43)
From	Eq.	(4.42),	we	then	have

	 (4.44)
The	pressure	in	the	liquid	in	the	capillary	beyond	a	concave	separation

surface	from	the	air	is	smaller	than	the	air	pressure	by	p	dif	in	Eq.	(4.44).	The
atmospheric	pressure,	on	the	other	hand,	is	the	same	in	the	capillary	and	in	the
wider	vessel.	Consequently,	the	liquid	in	the	capillary	must	rise	to	a	height	h
such	that	the	weight	of	the	liquid	column	equilibrates	the	pressure	difference,
i.e.,	ρgh	=	p	dif,	where	ρ	is	the	liquid	density	(Fig.	4.18a.	Equation	(4.44)	gives

	 (4.45)
If	the	meniscus	is	convex,	the	internal	pressure	in	the	liquid	is	larger	than	the

atmospheric	pressure,	and	the	height	of	the	meniscus	in	the	capillary	is	lower
than	that	in	the	wider	vessel	(Fig.	4.18b).



Notice	that	Eq.	(4.44)	also	correctly	foresees	the	ascension	h	to	be	inversely
proportional	to	the	capillary	diameter.

Resolving	Eq.	(4.45)	for	τ	LG	,	we	have

	 (4.46)
which	can	be	used	for	a	simple	determination	of	the	surface	tension,	by
measuring	the	capillary	ascension	h	and	the	contact	angle	θ	and	knowing	the
other	quantities	by	construction.

4.11	 Boiling	and	Condensation
In	this	section,	we	consider	the	boiling	and	condensation	phenomena.	In	the	first
case,	we	have	a	liquid	containing	bubbles	of	its	vapor,	in	the	second,	a	vapor
containing	droplets	of	its	liquid.	In	both	cases,	we	must	take	into	account	that	the
saturated	vapor	pressure	under	a	curved	liquid-vapor	interface	is	different	from
that	under	a	flat	surface.	The	overpressure	is	given	by	Eq.	(4.42),	with	the	gas
being	the	saturated	vapor.

A	supersaturated	vapor	in	contact	with	its	liquid	on	a	flat	surface
immediately	condensates.	Consider,	however,	a	closed	container	with	only	the
supersaturated	vapor	phase	inside.	The	condensation	must	initiate	with	the
formation	of	droplets.	Very	small	droplets	do	indeed	form	spontaneously	by
local	fluctuations.	They	are,	however,	unstable,	and	soon	re-evaporate,	because
the	vapor	that	is	supersaturated	relative	to	a	flat	surface	is	not	even	saturated
relative	to	the	curved	surface	of	the	droplets,	whose	radius	is	very	small.	To	be
able	to	expand,	rather	than	evaporate,	the	radius	of	the	droplet	must	be	larger
than	the	so-called	critical	radius	.	This	is	the	radius	relative	to	which	the	vapor,
under	the	given	conditions	of	temperature	and	pressure,	is	saturated.	When	this
happens,	the	drop	starts	growing	and	growing,	and	the	condensation	proceeds.
The	drop	has	acted	as	a	condensation	nucleus	.	If	the	vapor	is	extremely	clean,
the	condensation	nuclei	form	only	for	random	thermal	fluctuations.	These	are
very	rare,	all	the	more	so	the	larger	the	droplets.	The	boiling	does	not	start
immediately.

If	the	vapor	is	not	very	clean,	and,	for	example,	contains	thin	powder	grains,
these	can	act	as	condensation	nuclei.	The	small	drops	that	spontaneously	form,
and	that	are	too	small	to	imitate	the	condensation	alone,	now	wet	the	grains,
forming	a	liquid	layer	on	their	surface.	The	curvature	radius	of	the	so-formed
liquid	surfaces	may	be	larger	than	the	critical	radius,	and	the	condensation
proceeds.	For	example,	the	fog	one	sees	over	a	boiling	water	pot	under	certain



conditions	is	formed	by	the	supersaturated	vapor	condensing	on	tiny	powder
particles.	A	similar	condition	occurs,	if	the	surfaces	of	the	container	are	not	very
smooth,	at	the	micrometric	scale.	The	under-critical	droplets	form	a	liquid	film
on	the	small	asperities,	triggering	the	condensation.

Ions	are	another	class	of	condensation	nuclei.	When	present,	they	attract	the
vapor	molecules,	strongly	facilitating	the	formation	of	large	enough	droplets.
This	phenomenon	was	discovered	by	Charles	Thomas	Rees	Wilson	(Scotland,
1869–1959),	and	was	used	to	develop	the	cloud	chamber	.	The	chamber	makes
the	tracks	of	charged	particles,	like	cosmic	rays	and	those	originated	by
radioactive	decays,	visible.	The	cloud	chamber	consists	of	a	vessel	containing	a
vapor,	with	a	glass	window	to	see	inside	and	a	piston	to	expand	the	volume	when
needed.	The	pressure	is	initially	higher	than	that	of	the	saturated	vapor.	When	a
charged	particle	goes	through,	it	produces	a	trail	of	ions	in	its	path.	If	we	now
expand	the	chamber,	namely	reduce	the	pressure	moving	the	piston,	the	vapor
becomes	supersaturated	and	the	ions	act	as	condensation	nuclei.	The	“track”	of
the	particle	is	materialized	in	a	trail	of	droplets.	After	a	fraction	of	a	second,	the
droplets	are	big	enough.	We	shoot	a	flash	of	light	and	take	a	picture.	The	cloud
chambers	have	made	vital	contributions	to	cosmic	ray	and	particle	physics.

Consider	now	a	liquid	at	a	certain	pressure.	If	we	increase	its	temperature,
when	it	reaches	the	value	at	which	the	pressure	of	the	liquid	is	equal	to	the
saturated	vapor	pressure,	the	liquid	boils.	However,	if	the	liquid	is	very	pure	and
the	walls	of	the	container	extremely	smooth,	it	will	not	begin	to	boil.	The	fluid	is
in	the	state	of	superheated	liquid	.	Again,	in	this	case,	the	beginning	of	the	phase
transition	requires	the	presence	of	boiling	nuclei	.	In	the	liquid,	small	vapor
bubbles	spontaneously	form	due	to	fluctuations.	The	pressure	is	less	than	that	of
the	saturated	vapor	above	a	flat	interface	surface	but	not	above	the	concave
interface	of	the	small	bubble.	Consequently,	the	vapor	in	the	bubble	re-
condenses,	and	the	bubble	disappears.	Additionally,	the	boiling	can	now	start
only	if	bubbles	with	a	radius	larger	than	a	critical	value	form.	These	will	grow,
because	the	liquid	evaporates	inside	them.	However,	the	process	is	rare.
Impurities	like	powders	and,	more	often,	dissolved	extraneous	gases	that	form
large	enough	bubbles	trigger	the	boiling.

In	this	case	as	well,	ions	work	as	boiling	nuclei.	The	energetic	charged
particles	tracks	can	be	detected	by	devices	similar	to	the	cloud	chamber,	which
are	bubble	chambers	.	These	instruments	have	also	made	fundamental
contributions	to	particle	physics.

Problems



4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

How	would	the	pressure	of	a	fluid	change	if	the	intermolecular	forces	were
suddenly	to	disappear?

	
An	airtight	vessel	of	one-liter	volume	is	completely	full	of	water	at	27	°C.
How	would	the	pressure	change	if	the	intermolecular	forces	were	suddenly
to	disappear?

	
A	certain	quantity	of	nitrogen	is	enclosed	in	a	container	with	rigid	walls	of
volume	V.	Its	temperature	is	T	=	173	K.	Suppose	the	gas	follows	the	van
der	Waals	equation.	Find	its	pressure	p	and	compare	it	with	the	pressure	p	id
the	gas	would	have	if	ideal	in	the	following	cases:	(a)	V	=	1	L,	n	=	1	mol,
(b)	V	=	0.1	L,	n	=	1	mol,	(c)	V	=	1	L,	n	=	2	mol,	(d)	V	=	0.1	L,	n	=	2	mol.
The	molar	values	of	the	van	der	Waals	constant	for	nitrogen	are:	a	mol
	=	0.135	Pa	m6	mol−2	and	b	mol		=	3.9	×	10−5	m3	mol−1.

	
A	van	der	Waals	gas	(n	moles)	expands	at	constant	temperature	from	the
volume	V	i	to	the	volume	V	f	.	Find	the	expression	of	the	work	done,	if	the
constants	are	a	and	b.

	
A	mole	of	nitrogen	adiabatically	expands	in	a	vacuum	(Joule	free
expansion).	Its	volume	passes	from	V	i		=	10−3	m3	to	V	f		=	10−2	m3.	How
much	does	the	temperature	vary?	Suppose	that	nitrogen	follows	the	van	der
Waals	equation	with	a	mol	=	0.135	Pa	m6	mol−2.

	
We	want	to	expand,	at	constant	temperature,	2	mol	of	hydrogen	in	a
vacuum	from	V	i		=	10−3	m3	to	V	f		=	10−2	m3.	How	much	heat	should	be
supplied	to	the	system?	Suppose	that	hydrogen	follows	the	van	der	Waals
equation	with	a	mol	=	0.024	Pa	m6	mol−2.



4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

	
A	mole	of	oxygen	that	has	the	initial	volume	V	i		=	0.5	×	10−3	m3	expands	at
the	constant	temperature	of	–100	°C	to	V	f		=	10−2	m3.	Suppose	that	oxygen
follows	the	van	der	Waals	equation	with	a	mol	=	0.136	Pa	m6	mol−2	and	b

mol		=	3.2	×	10−5	m3	mol−1.	Calculate	and	compare	with	the	case	of	an	ideal
gas:	(a)	the	variation	of	internal	energy	ΔU,	(b)	the	work	W,	(c)	the
exchanged	heat	Q,	(d)	the	entropy	variation	ΔS.

	
What	are	the	characteristics	of	the	substances,	the	solid	and	vapor	phases	of
which	can	be	in	equilibrium	at	the	atmospheric	pressure?

	
Find	the	specific	volume	of	liquid	water	and	of	its	vapor,	considered	as	an
ideal	gas,	at	STP.

	
The	mercury-saturated	vapor	pressure	at	the	temperatures	T	1	=	373	K	and
T	2	=	393	K	are,	respectively,	p	1	=	36	Pa	and	p	2	=	99	Pa.	What	is	the
molar	latent	heat	of	vaporization	in	this	temperature	interval?

	
The	boiling	temperature	of	benzene	(C6	H6)	at	atmospheric	pressure	is	T
1	=	80.2	°C.	Find	the	pressure	p	1	of	its	saturated	vapor	at	T	1	=	75.6	°C,
knowing	that	the	latent	vaporization	heat	in	this	interval	is	Q	=	400	kJ/kg.

	
Consider,	in	the	plane	V,p,	the	horizontal	segment	of	the	isothermal	curve
at	the	temperature	T	of	a	certain	fluid,	corresponding	to	the	equilibrium
between	liquid	and	vapor.	Beyond	the	temperature,	we	know	the	saturated
vapor	pressure	p	s	,	the	mass	of	the	substance	m,	the	specific	volumes	V	l
and	V	v	of	the	liquid	and	vapor	and	the	vaporization	heat	Q	v	.	Call	1	and	2



4.13.

4.14.

4.15.

4.16.

4.17.

4.18.

the	states	at	the	extremes	of	the	line	(all	liquid	and	all	vapor,	respectively).
Express	for	the	transition	from	1	to	2:	(a)	the	work	W	12,	(b)	the	heat	Q	12,
(c)	the	internal	energy	variation	U	2–U	1,	(d)	the	entropy	variation	S	2–	S	1,
(e)	the	enthalpy	variation	H	2–H	1.

	
Consider,	in	the	plane	V,p,	the	horizontal	segments	of	the	isothermal
curves	at	the	temperature	T	of	a	certain	fluid,	corresponding	to	the
equilibrium	between	liquid	and	vapor.	What	does	correspond	to	them	in
the	plane	p,T?

	
The	films	of	soapy	water	are	similar	to	rubber	films.	How	do	their	surface
tensions	differ?

	
On	the	bottom	of	a	vessel,	there	are	holes	of	radius	a	=	50	µm.	Which	is
the	maximum	height	h	to	which	we	can	fill	the	vessel	with	water	before	it
begins	to	pour	out	of	the	holes?	Water	wets	the	bottom	of	the	vessel.	The
water	surface	tension	is	τ	=	73	mN	m−1.

	
One	end	of	a	straight	glass	capillary	tube,	of	internal	radius	a	=	0.5	mm,	is
vertically	immersed	in	a	water	bath	to	the	height	h	=	2	cm.	What	pressure
must	we	apply,	blowing	from	the	upper	extreme,	to	blow	out	an	air
bubble?	The	water	surface	tension	is	τ	=	0.073	N	m−1.

	
A	capillary	tube,	of	internal	diameter	d	=	0.5	mm,	is	vertically	immersed
in	a	water	bath.	The	length	of	the	external	part	of	the	capillary	is	10	cm.
How	much	does	the	water	rise	in	the	capillary?	The	water	completely	wets
the	walls.

	
A	small	cubic	box	of	side	a	=	3	cm	and	mass	m	=	5	g	floats	on	water.



What	is	the	distance	h	under	the	water	surface	of	the	bottom	of	the	box	if
(a)	the	water	completely	wets	the	walls	of	the	cube	(contact	angle	=	0°),	or
(b)	the	water	does	not	wet	the	walls	(contact	angle	=	180°)?

	



(1)
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Thermodynamics	and	statistical	mechanics	give	complementary	descriptions	of
the	same	physical	processes,	from	different	points	of	view,	the	former
macroscopic,	the	latter	microscopic.	When	observed	at	nanometric	dimensions,
matter	appears	to	be	composed	of	an	enormous	number	of	molecules.	Molecules
move	according	to	mechanical	laws,	but	there	are	so	many	that	it	would	be
impossible	to	solve	the	problem	of	motion	for	any	single	one.	Thermodynamics
deals	with	this	issue	using	global	variables,	like	volume,	pressure,	temperature,
concentrations,	etc.	This	approach	is	powerful,	allowing	us	to	describe
considerably	different	systems,	including	those	that	are	not	made	of	molecules,
like	the	electromagnetic	radiation	in	a	box.

Statistical	mechanics	starts	from	the	laws	of	mechanics	to	extract	the
equations	governing	the	mean	values	of	the	kinematical	quantities	and	their
statistical	distributions.	A	rigorous	treatment	of	statistical	physics	requires
knowledge	of	mathematical	tools	that	are	beyond	those	available	to	the	reader.	It
will,	however,	be	possible	to	understand	the	phenomena	clearly	in	their	essential
aspects,	if	not	in	their	fine	details.	We	shall	be	able	to	understand	the	physical
meanings	of	the	thermodynamic	variables,	pressure,	temperature,	internal
energy,	entropy	and,	in	the	next	chapter,	viscosity.

In	the	history	of	physics,	the	biggest	steps	forward	happen	when	previous,

mailto:alessandro.bettini@pd.infn.it


apparently	completely	separate	fields	become	“unified”	in	a	single	theory.	The
first	historical	unification	is	credited	to	Galilei	and	Newton,	who	unified
terrestrial	and	celestial	mechanics.	The	second	one,	in	the	second	half	of	the	XIX
Century,	is	credited	to	James	Clerc	Maxwell	(Scotland,	1831–1879)	and	Ludwig
Boltzmann	(Austria,	1844–1906),	who	developed	statistical	mechanics,	leading
to	a	unified	description	of	mechanics	on	one	side	and	thermodynamics,	along
with	the	chemistry	that	can	be	considered	a	part	of	it,	on	the	other.

As	is	always	the	case,	they	had	predecessors.	The	most	important	was	Daniel
Bernoulli	(Switzerland,	1700–1782),	who	laid	down	the	basis	for	the	kinetic
model	of	gases.	In	1738,	he	not	only	developed	the	hydrodynamic	theorem	that
we	studied	in	Sect.	1.8,	but	he	also	put	forward	the	hypothesis	that	gases	consist
of	an	enormous	number	of	molecules	moving	in	chaotic	motions.	He	advanced
the	fundamental	proposals	that	the	pressure	of	a	gas	is	due	to	the	impact	of
molecules	and	that	heat	exchanges	correspond	to	variations	in	the	molecules’
kinetic	energy.

The	velocity	distribution	function	of	molecules	was	determined	by	James
Clerc	Maxwell	in	1859,	using,	for	the	first	time,	statistical	concepts	in	a	physical
law.	Inspired	by	Maxwell,	Ludwig	Boltzmann	started	his	lifelong	study	of
statistical	mechanics	a	few	years	later.	This	monumental	contribution,	composed
of	papers	published	over	a	number	of	years,	eventually	reached	some	2000
pages.	In	1902,	Josiah	Willard	Gibbs	(USA,	1839–1903)	published	a	book	in
which	he	gave	a	complete	formal	treatment	of	statistical	mechanics,	both	for
microscopic	and	macroscopic	systems.	His	beautiful	brand	of	mathematics	falls
beyond	the	limits	of	this	course.

Two	years	before	that,	in	1900,	Max	Planck	had	employed	statistical
mechanical	methods	to	interpret	the	energy	spectrum	of	the	black	body
(electromagnetic	radiation	in	a	box).	Classical	physics	proved	inadequate	for	this
particular	endeavor,	and	Planck	was	consequently	led	to	advance	the	hypothesis
that	energy	is	not	continuous,	but	rather	quantized	in	discrete	minimum
quantities.	The	development	of	quantum	statistics	followed	with	the	work	of
several	scientists	in	the	first	decades	of	the	XX	Century.

Figure	5.1	shows	the	life	spans	of	the	major	contributors	to	classical
statistical	mechanics	in	graph	form.



1.

Fig.	5.1 Life	spans	of	the	main	contributors	to	classical	statistical	mechanics

In	the	first	two	sections	of	this	chapter,	we	shall	develop	the	kinetic	model	of
the	(ideal)	gas	and	see	the	physical	meaning	of	pressure	and	internal	energy.	We
shall	control	the	predictions	of	the	model	on	the	molar	heats	of	the	monoatomic
and	diatomic	gases	and	see	how,	for	the	latter	(and,	more	generally,	for	the
polyatomic	varieties),	classical	mechanics	reaches	its	limits	of	validity.	This	fact
leads	to	quantum	mechanics,	which,	however,	is	beyond	the	aims	of	this	book.	In
Sect.	5.3,	we	shall	deal	with	the	molar	heats	of	the	elemental	solid,	meeting	a
similar	limit.

Statistical	mechanics	does	not	deal	with	the	means	of	the	quantities	alone,
but	also	with	the	distributions	of	the	probabilities	for	their	different	values.	We
shall	study	such	distributions	of	kinetic	energy	and	velocity	in	Sects.	5.4–5.7.
Following	that,	we	shall	consider	the	always	necessary	experimental	control	of
the	laws	of	probability	distributions.

The	probability	distribution	of	the	different	forms	of	energy	follows,	in	a	first
approximation,	the	universal	law	according	to	Boltzmann.	The	corresponding
Boltzmann	factor	is	capable	of	describing,	broadly	but	in	their	essential	physics,
a	large	number	of	phenomena.	As	such,	its	importance	cannot	be	over-evaluated.
We	shall	discuss	a	few	examples	in	Sect.	5.9.

In	the	final	two	sections,	we	shall	demonstrate	physical	reasons	why
microscopic	phenomena	are	reversible,	while	macroscopic	are	not.	We	shall	thus
understand	the	physical	meanings	of	entropy	and	the	second	law	of
thermodynamics.

5.1	 Kinetic	Model	of	Ideal	Gas
In	this	section,	as	a	first	step	towards	the	unification	of	thermodynamics	with
mechanics,	we	shall	demonstrate	the	state	equation	of	the	simplest
thermodynamic	system,	the	ideal	gas,	starting	from	the	Newton	equation.

We	start	by	defining	a	molecular	model	of	the	monoatomic	ideal	gas,
assuming	the	following	hypotheses:

The	gas	is	made	of	molecules,	which	can	be	considered	point-like.	This
property	is	well	satisfied	for	the	monoatomic	gases,	but	not	for	the
polyatomic	ones.	In	addition,	the	density,	hence	the	pressure,	should	be	low
enough	to	guarantee	that	the	average	distances	between	molecules	is	much
larger	than	their	action	radius.	Consider	on	purpose	that	the	total	volume	of
the	molecules	is	substantially	the	volume	of	its	liquid,	the	covolume.



2.

3.

4.

	
Molecules	do	not	interact	except	when	they	collide.	The	collision	time	is	very
short	compared	to	the	average	time	between	one	collision	and	the	next.	In	the
real	gases,	molecules	interact	with	the	van	der	Waals	force	,	which,	however,
can	be	neglected	in	a	first	approximation,	all	the	better	the	more	rarefied	the
gas,	namely	the	lower	its	pressure.

	
Collisions	between	molecules	are	elastic.	This	property	is	also	well	satisfied
by	the	real	gases	(if	the	temperature	is	not	extremely	high).

	
The	motion	of	the	molecules	is	completely	random;	there	is	no	privileged
direction.	This	property	is	also	well	satisfied	by	the	real	gases.

	
We	assume	the	gas	to	be	enclosed	in	a	container	with	the	form	of	a

rectangular	parallelepiped,	with	rigid	and	perfectly	plane	walls.	We	choose	a
reference	frame	having	its	origin	in	a	vertex	and	axes	on	the	three	perpendicular
edges	joining	at	the	vertex,	as	in	Fig.	5.2.	We	assume	the	collisions	of	a	molecule
with	the	walls	to	be	elastic	too.	Consequently,	the	velocities	of	a	molecule	before
and	after	a	collision	with	one	of	the	walls	are	equal	in	magnitude,	and	their
directions	form	equal	and	opposite	angles	with	that	normal	to	the	wall.	In	other
words,	the	component	of	velocity	normal	to	the	wall	inverts	in	the	collision,
while	the	parallel	component	does	not	vary.

Fig.	5.2 The	motion	of	a	molecule	in	a	container



Note	that	the	last	hypotheses	we	introduced,	on	the	elasticity	of	the
molecule-wall	collisions	and	the	perfect	planarity	of	the	walls,	are	not	included
in	the	molecular	model	of	the	ideal	gas.	In	practice,	the	walls	always	have	some
roughness	much	larger	than	the	molecular	dimensions.	However,	the	wall
properties	cannot	have	any	influence	on	the	state	equation.	As	a	matter	of	fact,
these	supplementary	hypotheses	are	not	logically	necessary;	we	have	assumed
them	to	simplify	the	demonstration.

Let	us	start	with	the	physical	meaning	of	pressure.	In	the	collision	of	a
molecule	with	a	wall,	the	normal	component	of	its	momentum	changes	sign.	The
change	of	momentum	is	equal	to	the	impulse	given	to	the	wall.	The	impulse	is
the	integral	of	a	force	over	the	time	of	the	collision.	It	is	very	small,	but	the
number	of	molecules	is	enormous.	The	number	of	collisions	is	very	large	in	any
area,	even	if	very	small	compared	to	the	macroscopic	dimensions,	and	in	every
time	interval,	even	if	very	small	compared	to	the	macroscopic	times.	As	a
consequence,	the	effect	does	not	appear	macroscopically	as	a	sequence	of	small
impulses,	bong,	bong,	bong,…	but	as	constant	in	time	and	uniform	at	all	the
points	along	the	walls.

We	now	mathematically	express	what	we	have	stated	in	words.	Consider	the
two	walls	normal	to	the	x-axis,	one	at	x	=	0,	one	at	x	=	L	(the	length	of	the
relevant	side).	Let	us	indicate	its	area	with	A.	Let	m	i	be	the	mass	of	a	molecule
and	v	its	velocity	just	before	a	collision	with	the	wall	at	x	=	L	(see	Fig.	5.2).	In
the	collision,	the	x	component	of	the	velocity	inverts,	while	the	other	two
components	do	not	change.	The	impulse	given	to	the	wall	is	then	2	m	i	υ	x	.	The
force	exerted	by	that	molecule	on	that	wall	is	the	impulse	delivered	in	the	unit
time.	We	must	consider	that	the	molecule	hits	that	wall	many	times	in	a	second.
How	many?	After	the	first	collision,	the	molecule	moves	away,	hits	some	other
wall	and	then,	after	a	while,	comes	back.	We	can	find	the	time	interval	recalling
the	principle	of	independence	of	motions.	We	can	forget	the	components	of
motion	in	the	y	and	z	directions	and	think	of	the	motion	in	the	x	direction	only
with	velocity	υ	x	.	To	go	back	and	forth,	it	takes	2L/υ	x	seconds.	The	number	of
collisions	per	second	is	then	υ	x	/2L	and	the	impulse	delivered	per	unit	time	is	2m
i	υ	 x

2
	/2L.	If	the	total	number	of	molecules	is	N,	the	force	in	the	x	direction	due

to	their	entire	contribution	is

	 (5.1)

The	sum	represents	all	the	gas	molecules.	Note	that,	in	general,	the	gas	might
be	a	mixture	of	gases	with	different	molecules.	This	is	why	we	did	not	take	the



mass	out	of	the	sum.	We	now	observe	that	the	addends	are,	by	a	factor	of	½	a
part,	the	kinetic	energies	of	the	molecules.	Then,	the	sum	in	the	right-hand	side
of	Eq.	(5.1)	is	just	the	average	of	the	summed	quantity	times	the	number	of
molecules,	namely

	 (5.2)

On	the	other	hand,	the	motion	being	completely	random,	we	have	
,	and,	being	 ,	it	is	also

and	then,	calling	 ,	the	average	kinetic	energy	of	the	molecules

is

	 (5.3)
Here,	we	notice	that	we	considered	our	molecule	going	back	and	forth	as	if	it

were	alone.	This	is	not	so,	and	collisions	with	other	molecules	do	change	its
velocity.	However,	this	is	statistically	irrelevant,	because	when	a	molecule
changes	velocity,	there	is	always,	on	average,	another	one	that	takes	that
velocity,	and,	so	to	speak,	takes	its	place.	We	now	continue	the	demonstration.
To	find	the	pressure,	we	just	have	to	divide	the	force	we	found	by	the	area	on
which	it	is	exerted,	which	is	A.	Taking	into	account	that	the	volume	of	the	gas	is
V	=	LA,	we	write

The	number	N	of	molecules	is	the	number	of	moles	n	times	the	Avogadro
number,	and	we	finally	have	the	equation

	 (5.4)
This	is	the	state	equation	of	the	ideal	gas	of	our	model,	obtained	from	the

Newton	mechanics	with	statistical	arguments,	namely	with	statistical	mechanics
.	The	equation	we	found	says	that	the	product	of	pressure	times	the	volume	is
proportional	to	the	average	kinetic	energy	of	the	molecules.	In	thermodynamics,
this	product	is	proportional	to	the	absolute	temperature,	namely

	 (5.5)
We	must	conclude	that	the	absolute	temperature	is	proportional	to	the



average	kinetic	energy	of	the	molecules.	We	might	even	go	further	and	state	that
it	is	the	average	kinetic	energy.	It	would	be	enough	to	change	the	measurement
unit	from	kelvin	to	joule.	This,	however,	is	not	practical.	Keeping	the	SI	units,
we	write

	 (5.6)
where,	on	the	right-hand	side	dove,	we	have	introduced	the	Boltzmann
constant	k	B	,	after	Ludwig	Boltzmann	(Austria,	1844–1906),	one	of	the	main
creators,	with	Maxwell,	of	statistical	mechanics.	This	is	a	fundamental	constant
of	physics;	it	is	universal	because	the	gas	constant	and	the	Avogadro	number	are
such.	Its	value	is

	 (5.7)
The	result	we	found	is	valid,	in	particular,	for	a	monoatomic	gas.	In	this	case,

the	kinetic	energy	of	its	molecules,	which	we	considered	to	be	point-like,	is	the
center	of	mass	kinetic	energy.	Indeed,	there	cannot	be	any	kinetic	energy	relative
to	the	center	of	mass	for	a	point.	In	a	polyatomic	gas,	the	structure	of	the
molecules	must	be	considered	and	the	average	kinetic	energy	relative	to	the
center	of	mass	must	be	added	to	 .	We	shall	come	back	to	this	point	later

in	the	chapter.
We	will	now	discuss	the	result	we	found.	First,	we	notice	that	we	have	given

a	clear	mechanical	meaning	to	a	purely	thermodynamic	quantity,	such	as	the
absolute	temperature.	Notice	that	only	the	absolute	scale,	the	scale	based	on	the
gas	thermometer,	has	a	clear	physical	meaning,	not	the	Celsius,	the	Fahrenheit	or
others.	This	is	because	a	physical	temperature	of	zero	exists.	One	might	think
this	would	happen	when	the	motion	of	molecules	ceases.	However,	things	are
not	so	simple.	Indeed,	when	one	gets	very	close	to	absolute	zero,	classical
mechanics,	which	we	have	used,	no	longer	correctly	describes	nature.	Quantum
mechanical	phenomena	appear.	In	particular,	at	absolute	zero,	a	well-defined
non-zero	kinetic	energy	remains,	called	zero-point	energy	.	This	is	a	purely
quantum	phenomenon,	not	understandable	through	classical	physics.	However,
the	zero-point	energy	is	extremely	small	and	completely	negligible	at	the	usual
temperatures.	This	is	true	because	the	motions	we	have	considered	take	place	on
very	large	geometrical	scales	compared	to	the	atomic	ones.	Under	these
conditions,	classical	mechanics	works	well	down	to	very	low	temperatures.	But
this	is	not	the	case	when	the	motions	are	on	molecular	scales,	like	the	vibrations
of	molecules.	We	shall	come	back	to	that	in	a	later	portion	of	the	chapter.



We	still	should	check	whether	temperature	and	average	molecule	kinetic
energy	have	the	same	properties.	Otherwise,	we	cannot	identify	them	and	the
theory	loses	meaning.	While	this	is	certainly	true,	the	demonstration	is	not
simple	and	we	shall	not	go	into	it	here.	Rather,	we	shall	look	at	an	interesting
consequence.	In	a	mixture	of	gases,	all	the	components	have	the	same
temperature	and,	consequently,	the	different	molecules	have	the	same	average
kinetic	energy.

Let	us	consider	a	mixture	of	monoatomic	ideal	gases,	respectively,	with	N	1
molecules	of	the	first	gas,	N	2	of	the	second,	and	so	on.	The	total	number	of
molecules	is	N	=	N	1	+	N	2	+…Recalling	that	we	have	shown	Eq.	(5.4)	without
assuming	all	molecules	to	be	equal,	that	result	is	still	valid	and	we	can	write

	 (5.8)
This	tells	us	that	the	different	gases	are	independent	from	one	another.	This

is	a	consequence	of	the	assumption	that	their	molecules	do	not	interact	outside
collisions.	Defining	the	partial	pressure	of	the	ith	p	i	gas	as	the	pressure	it	would
have	if	it	were	taking	up	the	entire	volume	of	the	container	by	itself,	we	reach
the	conclusion	that

	 (5.9)
which	is	the	Dalton	law	:	the	total	pressure	of	a	(ideal)	gas	is	the	sum	of	the
partial	pressures	of	its	components.	We	have	seen	that	this	is	also	a	consequence
of	the	laws	of	mechanics.

We	now	summarize	the	physics	contained	in	the	ideal	gas	equation.	The
pressure	of	a	gas	in	a	container	is	due	to	the	collisions	of	its	molecules	with	the
surrounding	walls.	The	pressure	is	proportional	to	the	average	square	velocity.
One	of	the	powers	comes	from	the	impulse	delivered	in	a	collision,	the	second
from	the	rate	at	which	the	molecule	collides.	The	average	square	velocity	is
proportional	to	the	average	kinetic	energy	and	the	latter	is	proportional	to	the
absolute	temperature.

5.2	 Meaning	of	the	Internal	Energy.	Specific	Heats	of
Gases
The	internal	energy	state	function	of	a	thermodynamic	system	is	the	sum	of	the
kinetic	and	potential	energies	of	the	constituent	molecules,	namely	their
mechanical	energies.	The	kinetic	energy	we	are	talking	about	is	the	internal
energy	,	namely	the	energy	in	a	frame	in	which	the	system	is	at	rest.	For
example,	the	internal	kinetic	energy	of	a	gas	in	a	bottle	is	the	same	whether	the



bottle	is	at	rest	or	on	a	train	moving	at	100	km/h,	or	if	it	is	rotating	on	a	merry-
go-round.	Indeed,	the	temperature	of	the	gas	is	the	same	in	these	different
situations.	The	potential	energy	to	be	considered	is	also	the	internal	one.	It	is	the
same	whether	the	bottle	is	at	sea	level	or	on	the	top	of	a	mountain.	It	is	the
potential	energy	of	the	van	der	Waals	forces	between	molecules.	The	potential
energy	is	zero	for	and	only	for	the	ideal	gas.	The	first	law	of	thermodynamics
states	that	the	internal	energy	is	conserved	if	the	system	does	not	exchange	heat
or	work.	This	implies	that	the	intermolecular	forces	are	conservative	.	As	a
matter	of	fact,	at	the	microscopic	level,	dissipative	forces	do	not	exist.

The	van	der	Waals	force	is	attractive	at	the	intermolecular	distances	that	are
characteristic	of	gases.	Consequently,	the	internal	potential	energy	is	negative.	If
the	gas	expands,	the	average	distance	between	molecules	increases	and	the
internal	energy	decreases	in	absolute	value,	remaining	negative.	We	observe	that,
under	the	usual	conditions,	the	variation	of	internal	energy	of	gases	with	varying
volume	is	modest,	but	it	is	very	important	with	varying	temperature.	We	must
conclude	that	the	kinetic	energy	is	much	larger	than	the	potential	energy.	As	a
matter	of	fact,	it	is	found	that	Eq.	(5.6)	also	holds	for	the	monoatomic	real	gases,
not	only	for	the	ideal	ones.

Notice	that	the	factor	3	on	the	right-hand	side	is	just	the	number	of
mechanical	degrees	of	freedom	of	a	point	object,	such	as	a	monatomic	molecule.
The	number	of	degrees	of	freedom	of	a	body	is	the	number	of	parameters	we
must	know	to	know	the	mechanical	state	of	the	body.	Indeed,	when	we	know	the
three	coordinates,	we	know	the	mechanical	state	of	the	point.	We	conclude	that,
in	a	monoatomic	gas,	the	average	internal	kinetic	energy	is	k	B	T/2	per	degree	of
freedom.	This	conclusion	is	very	important	because	a	theorem	of	statistical
mechanics	states	its	general	validity.	The	energy	equipartition	theorem	states
that,	in	a	system	in	thermodynamic	equilibrium,	the	average	kinetic	energy	is
“equiparted”,	equally	divided,	amongst	the	degrees	of	freedom	of	the	molecules.
If,	for	example,	the	molecule	is	diatomic,	we	must	add	a	k	B	T/2	contribution	for
each	independent	rotation	(two)	and	vibration	(one)	degrees	of	freedom.

The	measurable	quantities	that	are	more	directly	related	to	the	internal
energy	are	the	specific	or	molar	heats	.	We	shall	see	in	this	section	and	the	next
the	predictions	by	statistical	mechanics	for	the	molar	heats	of	the	polyatomic
gases	and	of	the	solid,	and	we	will	compare	them	with	the	measured	values.

Let	us	start	with	the	measurement	of	the	gas	molar	heats	,	or,	better	yet,
because	it	is	easier,	of	their	ratio	γ	=	C	p	/C	V	.	Nicolas	Clément	(France	1779–
1842)	and	Charles	Desormes	(France;	1771–1862)	measured	the	heat	ratio	with
the	simple	experiment	shown	in	Fig.	5.3	(Clément-Desormes	experiment	)	in



1819.	The	gas	is	initially	in	the	S	container.	We	transfer	some	gas	in	the	spherical
bottle	to	the	pressure	p	0,	which	is	smaller	than	the	pressure	in	S.	Once	the
equilibrium	is	reached,	we	measure	p	0	with	the	manometer	M.	The	volume	of
the	gas	is	the	volume	of	the	bottle,	which	we	know.	Let	us	call	it	V	0.	The
temperature	is	the	(known)	ambient	temperature	T	0.	This	is	our	thermodynamic
system.

Fig.	5.3 Sketch	of	the	Clément-Desormes	experiment

We	now	open	the	valve	F	for	a	short	time,	admitting	some	more	gas	into	the
bottle.	We	can	consider	that	the	gas	originally	present,	our	system,	now	takes
only	a	fraction,	say	V,	of	the	total	volume.	Its	temperature	changes	to	a	new
value	too,	say	T.	We	do	not	know	V	or	T,	but,	as	we	shall	see,	we	do	not	need
them.	We	immediately	read	the	new	pressure,	say	p	1.	The	process	from	the
initial	state	(p	0,	V	0,	T	0)	to	the	final	one	(p	1,	V,	T)	has	been	very	fast	and	the
heat	exchange	has	been	negligible.	We	can	use	the	adiabatic	equation:

	 (5.10)
The	temperature	of	the	gas	in	the	bottle	now	gradually	changes	to	reach

equilibrium	at	T	0.	The	volume	of	the	originally	present	gas,	our	system,	remains
V,	because	neither	the	volume	of	the	bottle	nor	the	fraction	it	occupies	vary.	The
pressure	does	vary,	reaching	the	new	value	p	2,	which	we	measure.	This	third
state	is	(p	2,	V,	T	0).	It	is	on	the	same	isothermal	as	the	initial	state,	and	we	can
write

	 (5.11)
We	raise	both	sides	of	this	equation	to	the	power	γ	and	divide	by	those	of

Eq.	(5.10),	obtaining

	 (5.12)
Solving	for	γ,	we	have



	 (5.13)
Let	us	now	see	what	statistical	mechanics	foresees.	Let	us	start	with	the	ideal

monoatomic	gases	.	The	noble	gases	at	STP	behave	almost	as	such.	The
molecules	have	three	degrees	of	freedom.	Hence,	the	average	kinetic	energy	is	

.	There	is	no	potential	energy	between	molecules	(the	gas	is
ideal)	or	inside	the	molecules	(that	we	consider	point-like).	The	internal	energy
of	a	mole	of	gas	is	then

	 (5.14)
The	molar	heats,	taking	into	account	the	Mayer’s	relation	,	Eq.	(2.49),	are

foreseen	to	be

	 (5.15)
We	finally	foresee	that

	 (5.16)
Experiments	find	very	similar	values,	for	example,	1.668	for	Ar	and	1.666

for	He.
Consider	now	a	diatomic	gas	(oxygen	or	hydrogen,	for	example).	We	can

think	of	the	molecule	as	being	made	of	two	point-like	atoms	of	masses	m	1	and
m	2	(they	might	be	different,	as,	for	example,	in	the	CO).	The	two	atoms	interact
with	a	force	that,	in	a	good	approximation,	we	can	think	of	being	elastic,	with	an
elastic	constant	that	we	call	κ.	This	is	a	harmonic	oscillator	with	proper	angular
frequency	(see	Sect.	6.2	of	the	1st	volume),

	 (5.17)
where	µ	is	the	reduced	mass.	This	is	the	oscillation	angular	frequency	of	the
molecule.

We	need	six	quantities	to	define	the	mechanical	state	of	the	molecule.	It	has
six	degrees	of	freedom.	Three	degrees	of	freedom	characterize	the	translator
motion,	namely	the	motion	of	the	center	of	mass.	Two	degrees	of	freedom
correspond	to	the	rotations	about	the	central	axes.	We	do	not	count	the	rotation
about	the	axis	joining	the	atoms,	because	there	is	no	kinetic	energy	associated
with	the	moment	of	inertia	about	this	axis.	The	last	degree	of	freedom,	the
distance	between	atoms,	is	internal	to	the	molecule	and	corresponds	to	its
oscillation	at	the	angular	frequency	we	found.	For	the	equipartition	theorem,	the



average	kinetic	energy	is	 .
We	should	still	add	the	average	potential	energy	of	the	harmonic	oscillation.

We	know	from	mechanics	(see	Sect.	3.2	of	the	1st	volume)	that	the	average	for	a
period	of	the	potential	and	kinetic	energy	are	equal	in	a	harmonic	oscillator.	We
must	be	careful,	however.	Those	are	time	averages	while	we	now	need	statistical
averages	,	namely	averages	for	all	the	elements	of	the	system	at	a	certain	instant.
For	the	systems	in	thermodynamic	equilibrium	we	are	considering,	all	the
statistical	averages	are	independent	of	time.	Fortunately,	for	our	system,	the	two,
conceptually	different	averages	have	the	same	value.	This	is,	indeed,	the	case	for
the	majority	of	statistical	ensembles,	but	not	for	all	of	them.	We	can	understand
that	the	statement	is	likely	by	thinking	about	taking	a	rapid	sequence	of	ideal
shots	of	a	certain	molecule.	We	shall	“see”	the	atoms,	sometimes	closer,
sometimes	farther	away,	sometimes	with	one	orientation,	sometimes	with
another.	The	set	of	these	photos	cannot	be	different	from	the	set	of	photos	of
many	molecules	at	the	same	instant.	As	a	matter	of	fact,	all	the	molecules	of	a
given	species	are	identical.	We	can	conclude	that	the	statistical	average	is	equal
to	the	time	average	and	that	the	average	potential	energy	of	the	harmonic
oscillators	is	equal	to	their	average	kinetic	energy,	namely	k	B	T/2.	Finally,
statistical	mechanics	foresees	the	internal	energy	of	a	mole	of	diatomic	gas	to	be

For	the	molar	heats,	it	foresees

	 (5.18)
The	experimental	values	at	STP	for	common	gases	like	O2,	H2,	N2,	are

around	γ	=	1.40,	in	clear	disagreement	with	statistical	mechanics.	For	gases	with
more	massive	molecules,	like	iodine	I2	or	bromine	Br2,	the	experimental	values
are	around	γ	=	1.30,	close	to	the	theoretical	one.	This	is	true	at	the	ambient
temperature.	Experiments	show	that	both	molar	heats	and	their	ratios	vary	with
temperature.	At	high	enough	temperatures,	the	γ’s	of	all	the	diatomic	gases	tend
toward	the	statistical	mechanics	value	of	9/7.

The	following	attempt	to	“save”	(classic)	statistical	mechanics	has	been
done.	We	observe	that	the	measured	value	at	STP	γ	=	1.40	is	just	7/5,	which	is
the	value	foreseen	for	5	degrees	of	freedom.	It	looks	like	two	degrees	of	freedom
would	be	missing,	likely	the	internal	to	the	molecule	ones	(the	vibration).	In	this
case,	the	internal	energy	would	be	 .	We	can	think	of	the	molecule,
rather	than	being	two	material	points	linked	by	a	force,	as	being	a	small	rigid



stick.	Such	a	stick	indeed	has	five	degrees	of	freedom:	the	three	coordinates	of
the	center	of	mass	and	the	two	angles	fixing	the	direction	of	the	stick.	The	angle
about	the	stick	axis	is	irrelevant,	because	we	can	consider	its	section	negligible.
This	argument	is	known	as	the	freezing	out	of	degrees	of	freedom	.

This	argument	(which	is	often	made)	is,	however,	wrong.	Indeed,	the	rigid
stick	is	the	limit	of	the	system	shown	in	Fig.	5.4,	when	the	spring	constant	goes
to	infinite.	But	the	average	energy	in	the	internal	to	the	molecule	degree	of
freedom,	the	potential	plus	kinetic	vibration	energy,	is	k	B	T	however	large	the
spring	constant	might	be.	Consequently,	such	is	its	value	in	the	infinite	limit,
when	the	molecule	becomes	a	rigid	stick.

Fig.	5.4 The	scheme	of	a	diatomic	molecule

In	1859,	James	Clerc	Maxwell	(UK;	1831–1879)	published	a	fundamental
article,	the	foundation	of	statistical	mechanics.	It	was	the	unification	of
previously	separated	fields	of	knowledge,	mechanics,	thermodynamics	and
chemistry.	At	the	end,	he	summarized	the	extraordinary	successes	of	the	theory.
He	had	explained	many	known	relations,	such	as	the	gas	laws,	the	diffusion
processes,	and	the	viscosity	of	gases.	We	shall	discuss	the	latter	in	the	next
chapter.	However,	he	honestly	concluded:

Finally,	by	establishing	a	necessary	relation	between	the	motions	of
translation	and	rotation	[he	is	talking	about	the	equipartition	theorem]	of	all
particles	not	spherical,	we	proved	that	a	system	of	such	particles	could	not
possibly	satisfy	the	known	relation	between	the	two	specific	heats.

For	the	first	time	in	history,	classical	mechanics	had	to	face	a	problem	that
was	going	to	determine	its	limits	of	validity.	The	problem	of	the	specific	heats
would	remain	open	and	worry	the	most	brilliant	scientists	for	the	entire	second
half	of	the	XIX	century.	The	next	difficulty	was	discovered	in	the	last	decades	of
the	century.	It	was	again	in	statistical	mechanics,	this	time	in	the	mechanics	of



the	photon	gas.	It	was	the	problem	of	the	black	body	radiation	.	It	was	solved	by
Max	Planck	(Germany,	1858–1947)	in	1900,	opening	the	way	for	a	very	deep
scientific	revolution,	quantum	mechanics.

We	now	briefly	consider	the	polyatomic	molecule	gases.	Take,	for	example,
ethane	(C2H6).	Having	8	atoms,	the	molecule	has	3	×	8	=	24	degrees	of	freedom,
namely	12k	B	T	alone	of	kinetic	energy.	The	internal	to	the	molecule	potential
energy	should	be	added.	It	is	clear	that	γ	must	be	very	close	to	1.	However,	the
measured	value	is	1.22.	Once	more,	the	theory	fails.

We	notice	that	quantum	effects	are	relevant	for	the	motion	inside	the
molecules,	but	not	for	the	motion	of	the	molecule	center	of	mass	in	the	container.
This	is	an	example	of	what	we	stated	in	the	introduction;	quantum	effects,	which
in	any	case	increase	with	decreasing	temperature,	are	more	important	the	more
the	motion	is	limited.	The	center	of	mass	is	essentially	free	and	quantum	effects
on	its	motion	appear	only	at	extremely	low	temperatures.	At	the	end	of	Sect.	5.9,
we	shall	give	some	hints	as	to	how	quantum	mechanics	explains	the	observed
values	of	the	specific	heats.

5.3	 Specific	Heats	of	Solids
The	equipartition	theorem	holds	for	every	system,	including	the	condensate
bodies.	Even	for	them,	the	average	kinetic	energy	is	k	B	T/2	per	degree	of
freedom.	The	calculation	of	the	contribution	of	the	potential	energy	is,	in
general,	very	difficult.	It	is	rather	simple	for	the	elemental	solids	,	namely	for	the
crystals	having	only	one	type	of	atom,	which	we	will	now	discuss.	The	measured
quantity	is	the	specific	heat.	Generally,	it	is	measured	at	constant	(atmospheric)
pressure.	Note,	however,	that	the	differences	between	constant	pressure	and
constant	volume	heats	are	very	small	for	solids	(for	example,	for	Fe,	it	is	γ	=	c	p
/c	V		=	1.02).	This	is	because	the	dilatation	coefficients	of	solids	are	small.

Table	5.1	gives,	in	the	second	column,	the	specific	heats	of	several	elemental
solids	at	room	temperature.	They	are	very	different	from	one	another.	If	we,
however,	compare	molar	heats	,	reported	in	the	4th	column,	we	see	that	they	are
rather	similar.	In	a	round	figure,	we	can	write

	 (5.19)

Table	5.1 Specific	and	molar	heats	and	molar	masses	for	crystals	of	several	elements

Element Specific	heat	(kJ	kg−1	K−1) Molar	mass	(g	mol−1) Molar	heat	(kJ	mol−1	K−1)
Carbonium 0.50 12 6.0



Aluminum 0.89 27 24.1
Copper 0.38 63.4 24.4
Iron 0.44 55.8 25.0
Zinc 0.39 65.4 25.3
Tungsten 0.134 183.9 24.6
Lead 0.13 197 25.2

This	property	was	discovered	in	1819	by	Pierre	Loius	Dulong	(France,
1785–1838)	and	Alexis	Thérèse	Petit	(France,	1791–1820)	and	is	known	as	the
Dulong-Petit	rule	.	They	also	discovered	the	important	exception	of	the
diamond,	whose	molar	heat	is	about	one	fourth	of	the	others.	The	statistical
mechanical	interpretation	was	given	by	Ludwig	Boltzmann	in	1871.	We	can
consider	a	crystal	as	an	array	of	point-like	atoms	that	oscillate	about	stable
equilibrium	positions,	as	we	described	it	in	Sect.	4.1.	Each	atom	can	be
considered	a	harmonic	oscillator,	which	can	oscillate	in	three	independent
directions.	For	each	of	them,	the	average	kinetic	energy	is	k	B	T/2.	In	addition,
we	must	include	the	potential	energy.

As	we	did	for	the	gases,	we	can	identify	temporal	averages	with	statistical
averages.	The	average	potential	energy	of	each	oscillation	direction	is	equal	to
the	average	kinetic	energy,	namely	k	B	T/2.	In	conclusion,	the	total	average
mechanical	energy,	kinetic	plus	potential,	of	the	oscillators	is	6k	B	T/2.	The
internal	energy	of	a	mole	of	solid	is	then

	 (5.20)
and	the	molar	heat	is

	 (5.21)
which	is	the	Doulong	Petit	rule.	We	have	seen	that,	based	on	the	Newton
laws,	particularly	the	energy	equipartition,	this	rule	is	what	statistical	mechanics
foresees.	However,	at	an	ambient	temperature,	the	rule	is	not	valid	for	diamond.
This	problem	worsened	when	experiments	at	low	temperatures	by	James	Dewar
(UK,	1842–1923)	and	Walther	Nernst	(Germany,	1864–1941)	showed	that	molar
heats	are	not	constant.	They	increase	with	temperature.	The	Dulong-Petit	rule
holds	for	all	elemental	crystals,	including	diamond,	if	the	temperature	is	high
enough.

When	temperature	decreases,	the	molar	heats’	decrease	is	initially	slow.
However,	below	a	certain	temperature,	characteristic	of	the	solid,	it	becomes
much	faster.	This	is	the	Debye	temperature	θ	D	.	Plotting	the	molar	heats	of
different	elemental	solids	versus	the	ratio	of	the	temperature	and	the	Debye



temperature	(T/θ	D	),	one	finds	an	almost	universal	curve,	as	shown	in	Fig.	5.5.
The	correct,	quantum	explanation	of	the	phenomenon	was	formulated	by	Peter
Debye	(The	Netherlands,	1884–1966)	in	1912.	The	theory	foresees,	in	particular,
in	perfect	accord	with	the	data,	that	the	specific	heats	tend	towards	zero
proportionally	to	the	third	power	of	temperature:

	 (5.22)

Fig.	5.5 Molar	heat	of	elemental	crystals	versus	absolute	temperature	normalized	to	the	Debye	temperature

Roughly	speaking,	the	Debye	temperature	is	the	temperature	below	which
classical	mechanics	fails.	To	give	some	examples,	values	of	θ	D	are	2230	K	for
diamond	(atomic	mass	of	C	is	A	=	12),	428	K	for	Al	(A	=	27),	470	K	for	Fe
(A	=	55.8),	327	K	for	Zn	(A	=	65.4),	164	K	for	Au	(A	=	197)	and	105	K	for	Pb
(A	=	207).	One	sees	that	the	Debye	temperature	tends	to	decrease	with	an
increasing	atomic	number.	In	particular,	the	Debye	temperature	of	Carbonium	is
much	higher	than	room	temperature.	For	such	light	elements,	quantum	effects
are	already	important	at	room	temperature.

Classical	mechanics	failure	happens	for	solids	at	temperatures	much	higher
than	those	for	the	translatory	motions	in	gases.	This	is	because	the	oscillatory
motions	in	a	crystal	are	confined	within	much	smaller	dimensions.	We	also	see
that	the	larger	the	atom	mass,	the	lower	the	temperature	at	which	classical
mechanics	fails.

At	temperatures	close	to	absolute	zero,	all	substances	are	in	a	condensed
phase;	no	gas	exists.	Nernst	postulated	in	1905	the	Nernst	heat	theorem	.	This
can	be	formulated	by	stating	that,	at	low	enough	temperatures,	the
thermodynamic	state	functions	of	condensed	bodies	tend	to	be	independent	of
temperature.	The	derivatives	relative	to	temperature	of,	in	particular,	internal



energy	and	enthalpy,	which	are	the	molar	heats	C	p	and	C	V	,	go	to	zero.	We	have
already	noticed	this	behavior.

5.4	 Distribution	Functions
Up	to	now,	we	have	considered	the	mean	values	of	mechanical	quantities,	such
as	kinetic	energy,	over	all	the	molecules	of	a	macroscopic	system.	Obviously,	the
kinetic	energies	of	molecules	are	different	from	one	another.	They	are	casually
distributed.	So	are	the	positions,	the	velocities,	etc.	We	shall	now	find	the	strictly
connected	distributions	of	kinetic	energies	and	of	velocities	of	an	ideal
monoatomic	gas.	We	shall	then	see	how	the	results	can	be	compared	with
experiments.

We	start	by	considering	how	the	molecules	are	distributed	in	space,
independently	of	their	velocity.	In	general,	density	might	vary	with	position	in
the	gas.	Let	ρ(r)	be	the	gas	density	at	the	generic	point	with	position	vector
r	=	(x,	y,	z).	All	the	molecules	of	our	ideal	gas	are	equal,	point-like	and	have
mass	m.	A	relevant	quantity	for	a	system	composed	of	equal	particles	is	the
number	density	,	which	is	the	number	of	particles	per	unit	volume.	We	shall
indicate	this	with	n	p	.	The	relation	between	number	and	mass	densities	is	simply

	 (5.23)
The	number	dn	p	of	molecules	in	the	elementary	volume	between	x	and

x	+	dx,	y	and	y	+	dy	and	z	and	z	+	dz	is

	 (5.24)
The	function	n	p	(r)	informs	us	as	to	how	the	molecules	are	distributed	in

space,	or,	in	other	words,	where	it	is	more	probable	and	where	less	probable	for
us	to	find	molecules.	Note	that	the	question	as	to	know	exactly	how	many
molecules	are	in	a	given	position	is	meaningless,	because	the	position	is	a
continuous	variable	with	infinite	values,	while	the	number	of	molecules	is
enormous,	but	finite.	The	medium	is	often	homogeneous,	for	example,	a	liquid
in	a	container.	Then,	n	p	(r)	is	independent	of	r.	But	this	is	not	always	so.
Consider,	for	example,	the	atmosphere.	Its	density	becomes	smaller	and	smaller
with	increasing	height,	due	to	the	weight.	We	shall	study	that	in	the	next	section.

We	now	consider	the	distribution	of	the	magnitude	of	the	velocity.	Again,	the
question	of	exactly	how	many	molecules	have	that	velocity	is	meaningless	(How
many	cars	pass	at	a	given	kilometer	of	a	freeway	in	a	day	traveling	at	exactly
100,000,000…	km/h?).	The	more	meaningful	question	to	ask	is	how	many	cars
have	velocities	in	a	small	interval	around	the	value	we	are	interested	in,	for



example,	between	199	and	101	km/h.
Let	N	be	the	number	of	molecules	per	unit	volume	and	ΔN	the	number	with

velocity	in	magnitude	between	υ	and	υ	+	Δυ.	We	define	the	function

	 (5.25)
To	understand	the	meaning	of	this	equation,	suppose	that	the	function	n(υ)

has,	for	example,	the	behavior	shown	in	Fig.	5.6.	The	shaded	area	represents	the
number	dN	of	molecules	per	unit	volume	with	velocity	between	υ	and	υ	+	dυ.
From	Eq.	(5.25),	we	have,	obviously,

	 (5.26)
which,	geometrically,	is	the	shaded	area	in	the	figure	(consider	that	the
ordinate,	N,	varies	only	by	infinitesimals	inside	the	interval	dυ	that	is	itself
infinitesimal).

Fig.	5.6 A	velocity	distribution	function

If	we	know	n	p	(υ),	we	know	several	details	of	the	system.	For	example,	if	we
want	the	number	of	molecules	(per	unit	volume)	with	velocities	between	υ	1	and

υ	2,	we	just	have	to	calculate	the	integral	 ,	if	we	want	the	number	of

molecules	with	velocity	larger	than	υ	1,	we	calculate	the	integral	 ,	and
so	on.	Notice,	in	particular,	that	the	total	number	of	molecules	per	unit	volume,
namely	with	whatever	velocity,	is

	 (5.27)

n	p	(υ)	being	a	number	per	unit	volume	and	unit	velocity	interval,	its	physical

dimensions	are	 .

The	velocity	distribution	function	is	defined	as	n	p	(υ)	divided	by	the	number



of	molecules	per	unit	volume,	namely

	 (5.28)
Clearly,	it	is

	 (5.29)

We	say	that	the	function	is	normalized,	meaning	that	its	integral	over	its
entire	domain	is	one.	The	quantity	f(υ)	dυ	has	two	meanings	that	are	strictly
connected	with	one	another.	The	first	meaning	is	to	be	the	fraction	of	molecules
with	velocity	between	υ	and	υ	+	dυ.	We	recall	that,	by	definition,	the	probability
of	an	event	is	the	ratio	between	the	number	of	cases	favorable	to	the	event	and
the	total	number	of	cases.	Then,	we	ask	what	the	probability	is	that	a	molecule
chosen	at	random	has	velocity	between	υ	and	υ	+	dυ.	We	immediately	see	that
the	probability	of	this	event	is	just	f(υ)dυ.	The	function	f(υ)	becomes	a
probability	when	multiplied	by	dυ.	For	this	reason,	it	is	said	to	be	a	probability
density	.	Its	physical	dimensions	are	the	reciprocal	of	velocity.

5.5	 The	Ideal	Gas	in	a	Force	Field
In	this	section,	we	shall	consider	a	gas	in	thermal	equilibrium	in	the	field	of	the
weight	force.	The	mass	and	number	densities	are	larger	at	lower	altitudes	than	at
higher.	We	shall	find	the	distribution	of	the	molecules	in	elevation,	assuming
temperature	to	be	the	same	at	all	points	of	the	gas.	This	is	not	really	so	in	the
earth’s	atmosphere,	where	the	temperature	diminishes	with	increasing	altitude,
and	in	which	winds	exist.	However,	up	to	altitudes	of	10	km,	the	temperature
usually	decreases	by	about	6	K/km,	or,	in	relative	terms,	about	3	%/km,	which
we	can	neglect	in	limited	elevation	intervals	in	absence	of	strong	winds.

Let	us	consider	a	vertical	isothermal	column	of	section	S	of	ideal	gas	under
the	action	of	its	weight.	The	system	is	in	thermodynamic	equilibrium	(in
particular,	there	is	no	wind).	We	consider	a	gas	of	equal	molecules	of	mass	m.
We	take	a	vertical	coordinate	axis	z	vertically	upward.	The	gravity	acceleration
is	g	(directed	as	−z).	The	number	of	molecules	per	unit	volume	in	the	generic
layer	between	z	and	z	+	dz	is	the	numeric	density	at	z,	say	n(z),	times	the	volume
of	the	layer,	S	dz.

The	layer	is	in	equilibrium.	Consequently,	the	resultant	force	acting	on	it	is
zero.	The	forces	are:	(1)	the	weight,	which	is	the	number	of	molecules	in	the
layer	n(z)Sdz,	times	the	mass	of	a	molecule	m	times	gravity	acceleration,	namely
n(z)Sm	gdz	directed	vertically	downward.	(2)	The	pressure	force	on	the	lower



face	(elevation	z)	Sp(z),	vertically	downward,	(3)	the	pressure	force	on	the	upper
face	(elevation	z	+	dz)	S	p(z	+	dz),	vertically	downward.	At	equilibrium:	

.	We	immediately	get

	 (5.30)
The	two	functions,	numeric	density	n	p	(z)	and	pressure	p(z),	are	linked	by

the	state	equation.	Indeed,	let	us	consider	a	generic	volume	V	and	indicate	with	n
the	number	of	moles	it	contains.	The	number	of	molecules	per	unit	volume	is	n	p
(z)	=	n(z)N	A	/V.	The	state	equation	of	the	ideal	gas

	 (5.31)
can	be	then	written	as

or

We	substitute	this	equation	in	Eq.	(5.30),	obtaining

	 (5.32)
This	differential	equation	can	easily	be	integrated	into	separating	variables,

namely	writing	it	as

	 (5.33)
which	only	contains,	on	the	left-hand	side,	the	function	n	p	(z).	Integrating,
we	have

	 (5.34)
where	const	is	the	integration	constant,	which	we	do	not	need	to	specify	now.
Finally,	taking	the	exponential	of	both	sides,	we	get

	 (5.35)
where	n	p0	is	now	the	integration	constant.	We	immediately	see	that	its
meaning	is	to	be	the	numeric	density	at	z	=	0,	namely	n	p0	=	n	p	(0).

Figure	5.7	shows	the	numeric	density	distributions	in	elevation	for	two	gases
of	different	molecular	mass,	H2	and	O2,	at	the	same	temperature.	Both
distributions	are	exponential.	With	increasing	elevation,	the	gas	of	larger



molecular	weight	rarefies	sooner.	The	real	atmosphere	cannot	be	considered
isothermal	in	such	an	elevation	interval,	but	the	ratio	of	hydrogen	to	oxygen
density	does	diminish	with	increasing	elevation.

Fig.	5.7 Numeric	density	relative	to	sea	level	of	H2	and	O2	versus	elevation	in	an	isothermal	atmosphere

We	notice	that	the	expression	mgz	in	Eq.	(5.35)	is	just	the	potential	energy	of
a	single	molecule,	in	the	field	force	of	the	weight.	The	argument	we	made	to
reach	Eq.	(5.35)	is	valid	for	any	field	of	forces	with	potential	energy	U	p	(z).	The
numerical	density	is	given	by

	 (5.36)
where	n	p0	=	n	p	(0)	is	the	integration	constant.	This	is	a	particular	case	of	a
general	and	very	important	expression,	called	a	Boltzmann	distribution	,	of
position,	in	this	case.	We	shall	encounter	more	cases	in	the	subsequent	sections.

Number	density	cannot	be	easily	measured,	but	the	pressure,	which	is
proportional	to	it,	can.	Clearly,	the	elevation	dependence	on	pressure	is

	 (5.37)
with	p	0	=	p(0).	We	finally	observe	that	n	p	(z)	is	proportional	to	the
probability	of	finding	a	molecule	at	elevation	z,	which	we	call	f(z),	namely	the
position	distribution	function	.	In	practice,	one	is	often	interested	in	the	ratio	of
probabilities,	namely,	in	this	case,	the	ratio	of	the	probabilities	of	finding	a
molecule	at	two	different	elevations	,	say	z	2	and	z	1.	This	is	given	as



	 (5.38)

which	is	the	ratio	of	the	Boltzmann	factors	or	(last	term)	e	raised	to	the
power	equal	to	the	opposite	of	the	potential	energy	difference	divided	by	k	B	T.

As	we	have	already	noted,	the	atmosphere	is	not	isothermal	at	all.	In
addition,	as	is	well	known,	temperature	and	pressure	continuously	change	over
time.	However,	their	average	values	are	assumed	to	define	the	so-called	standard
atmosphere.	Table	5.2	reports	the	values	of	temperature,	pressure	and	density	of
the	standard	atmosphere	as	functions	of	elevation.

Table	5.2 Standard	atmosphere	temperature,	pressure	and	density	versus	elevation

Elevation	(km) Temperature	(°C) Pressure	(hPa) Density	(kg	m−3)
0 15 1013 1.225
1 8.5 899 1.111
2 2 795 1.007
3 −4.5 701 0.909
4 −11.0 617 0.82
5 −17.5 540 0.737
6 −24.0 472 0.66
7 −30.5 412 0.591
8 −37.0 357 0.527
9 −43.5 308 0.467
10 −50.0 264 0.414

Notice	that,	in	the	table,	pressures	are	given	in	hPa.	This	unit	is	commonly
used	in	meteorology,	because	it	is	rather	close	to	the	torr	=	1.33	hPa.	The	torr	is
the	pressure	of	a	mercury	column	1	mm	in	height	and	is	also	called	the	“mm
Hg”.	It	is	an	old	unit,	recalling	when	pressures	were	measured	with	mercury
barometers.	It	is	still	used,	in	particular,	for	blood	pressure.

Consider	now	the	general	case	in	which	the	potential	energy	of	the	molecule
is	a	function	of	the	three	coordinates,	say	U	p	(r),	where	r	is	the	position	vector.
The	distributions	at	the	x	and	y	coordinates	are	obtained	with	arguments	identical
to	those	we	have	just	developed.	We	can	say	that	the	probability	of	finding	a
molecule	in	the	infinitesimal	volume	dx	dy	dz	at	the	position	vector	r	is	given	by

	 (5.39)
The	function	f(r)	is	the	probability	per	unit	volume	(probability	density)	of



finding	a	molecule	in	the	given	position	or,	equivalently,	with	a	given	potential
energy.

5.6	 The	Boltzmann	Law	for	Kinetic	Energy
In	the	last	section,	we	found	the	molecules’	position	distribution	function	in	a
force	field.	We	shall	now	find	their	velocity	distribution	function	,	which	we
indicate	with	f(v)	or,	more	explicitly,	f(υ	x	,	υ	y	,	υ	z	).	This	function	is	the
probability	of	finding	in	the	unit	volume	a	molecule	with	an	x-component	of
velocity	between	υ	x	and	υ	x		+	dυ	x	,	a	y-component	between	υ	y	and	υ	y		+	dυ	y
and	a	z-component	between	υ	z	and	υ	z		+	dυ	z	.	Similar	to	the	case	of	the	potential
energy,	such	a	molecule	has	a	definite	kinetic	energy	,	

.	The	relationship	between	velocity	distribution

function	and	kinetic	energy	is	equal	to	that	between	position	distribution
function	and	potential	energy	Eq.	(5.39).	We	shall	now	prove	the	probability	of
finding	a	molecule	in	the	infinitesimal	volume	in	the	“velocity	space”	between	υ
x	and	υ	x		+	dυ	x	,	υ	y	and	υ	y		+	dυ	y	and	υ	z	and	υ	z		+	dυ	z

	 (5.40)
where,	as	usual,	f	0	is	a	constant.

Equations	(5.39)	and	(5.40)	show	that	both	probabilities	are	proportional	to
the	Boltzmann	factor	.	Its	exponent	is,	in	both	cases,	the	relevant	energy,
potential	or	kinetic,	divided	by	the	same	quantity	(with	the	dimensions	of
energy).

We	continue	considering	an	ideal	gas	in	thermodynamic	equilibrium	at
temperature	T.	We	start	by	finding	the	distributions	of	the	vertical	component	of
velocity,	υ	z	.	We	once	again	consider	a	vertical	column	of	gas	of	section	S	under
the	action	of	weight.	Equation	(5.36)	gives	the	position	(elevation)	distribution
n(z).	The	motion	of	the	molecules	is	completely	disordered.	In	particular,	there	is
no	privileged	direction.	As	is	well	known,	the	projections	of	the	motion	of	a
molecule	on	the	axes	are	independent	of	one	another.	We	then	fix	our	attention
on	the	motion	along	z	and	forget	about	the	other	components,	which	exist	but	are
irrelevant.

We	ask	how	many	molecules	per	unit	volume	at	a	given	height	z	have	the	z
component	of	their	velocity	between	υ	z	and	υ	z		+	dυ	z	.	This	number	divided	by
the	total	number	per	unit	volume	is	f(υ	z	)dυ	z	,	where	f(υ	z	)	is	the	distribution



function.	An	important	theorem	of	statistical	mechanics,	of	which	we	will	not
give	a	demonstration,	states	that	the	distribution	function	f(υ	z	)	depends	only	on
temperature,	and	not,	in	particular,	on	z.	At	higher	elevations,	for	example,	the
density	of	molecules	diminishes,	but	their	velocity	distribution	does	not	vary.

We	now	express	the	(obvious)	fact	that	the	probability	of	finding	a	molecule
with	any	velocity	is	one.	In	formulae,

	 (5.41)

Let	us	now	consider	a	horizontal	plane	cutting	the	column	at	the	height	z.	Let
us	fix	our	attention	on	the	molecules	with	velocity	between	υ	z	and	υ	z		+	dυ	z	,
with	υ	z		>	0	(going	up).	How	many	of	these	molecules	will	cross	the	plane	in	the
time	interval	between	t	and	t	+	dt?	These	are	the	molecules	that,	at	time	t,	are
below	the	plane	at	a	distance	less	than	or	equal	to	that	which	they	can	cross	in	dt.
This	distance	is	υ	z	dt.	The	volume	containing	them	is	Sυ	z	dt.	Their	number	is,
thus,	this	volume	times	the	number	per	unit	volume	at	the	considered	height
[n(z)]	times	the	fraction	of	them	in	the	considered	velocity	interval	[f(υ	z	)dυ	z	],
namely	Sυ	z	dt	n(z)f(υ	z	)dυ	z	.

Let	us	follow	our	molecules	for	a	while.	After	some	time,	they	are	at	a
greater	height,	say	z′.	Their	velocity	is	smaller,	say,	 ,	and	the	velocity	interval
is	changed	to	 .	The	number	of	molecules	crossing	upward	through	the
horizontal	plane	at	z′	in	dt,	according	to	the	argument	we	just	made,	is	

.	But	these	are	just	our	molecules,	because	we	are	at	the
statistical	equilibrium;	how	many	are	arrivals	and	how	many	are	departures,	

.	We	can	simplify	and	write

	 (5.42)
We	now	apply	the	energy	conservation	principle.	Considering	that	the	x	and

y	components	of	the	velocity	do	not	vary,	we	write

	 (5.43)
Differentiating	both	sides	with	z	and	z′	fixed,	we	have

	 (5.44)
Equation	(5.42)	becomes



	 (5.45)
But	we	do	know	n(z),	Eq.	(5.36),	and	can	write

	 (5.46)

But,	for	the	energy	conservation,	the	potential	energy	difference	is	equal	and
opposite	to	the	kinetic	energy	difference,	and	we	can	write

	 (5.47)

and	finally

	 (5.48)

where,	as	usual,	f	0	is	a	constant	that	we	do	not	need	to	determine	now.
Notice	that	gravity	acceleration	does	not	appear	in	the	final	result.	Indeed,

the	velocity	distributions	are	completely	independent	of	the	force	field,	which
might	not	exist	at	all.	In	our	argument,	the	weight	field	played	a	purely	ancillary
role	in	helping	us	to	establish	a	relation	between	the	elevation	distribution,
which	we	knew,	and	the	velocity	distribution,	which	we	wanted	to	find.	The
physical	mechanism	determining	the	velocity	distribution	at	equilibrium	has
nothing	to	do	with	the	field,	being	the	result	of	the	collisions	between	molecules.

Also	note	that	we	implicitly	assumed	that	molecules	passing	from	z	to	z′	do
not	collide.	This	hypothesis	can	be	held	because,	the	motion	being	disordered,	if
a	molecule	changes	velocity,	there	is,	on	average,	another	one	taking	its	place.

Clearly,	the	distributions	of	the	other	velocity	components	are	identical,
namely

	 (5.49)

We	see	that	the	velocity	component	distributions	are	Gaussian	with	zero
mean	value.	Indeed,	the	number	of	molecules	in	one	direction	is	equal	to	those	in
the	opposite	one.

We	can	now,	finally,	determine	the	(composed)	probability	of	finding	a
molecule	with	an	x-component	of	velocity	between	υ	x	and	υ	x		+	dυ	x	,	a	y-
component	between	υ	y	and	υ	y		+	dυ	y	and	a	z-component	between	υ	z	and	υ	z
	+	dυ	z	in	the	unit	volume.	It	is	simply	the	product	of	the	three,	independent
probabilities:



	 (5.50)

Notice,	in	particular,	that	the	velocity	component	distribution	is	independent
of	the	direction,	as	it	should	be.	Otherwise,	if	some	direction	were	more
probable,	we	should	observe	a	collective	motion	in	that	direction.

5.7	 Velocity	Magnitude	Distribution	of	Molecules
We	shall	now	find	the	distribution	of	the	velocity	magnitude	f(υ)	of	our	gas
molecules.	In	other	words,	we	must	look	for	the	fraction	of	molecules	with
speeds	between	υ	and	υ	+	dυ	is	f(υ)dυ.	We	work	in	the	“velocity	space”,	in	which
the	axes	are	the	velocity	components.	We	consider	an	infinitesimal	element,	as
shown	in	Fig.	5.8.

Fig.	5.8 An	infinitesimal	element	in	the	velocity	space

In	the	velocity	space,	the	molecules	having	velocity	in	magnitude	between	υ
are	υ	+	dυ	are	those	whose	representative	vector	has	its	head	in	the	spherical
shell	of	radiuses	υ	and	υ	+	dυ.	The	volume	of	the	shell	is	4πυ	2	dυ.	From
Eq.	(5.50),	the	number	of	molecules	it	contains	is

	 (5.51)
where	α	is	a	constant,	called	the	normalization	constant	,	in	which	we	have
included	the	factor	4π.	The	normalization	condition	is	the	condition	that	the	total
number	of	molecules	per	unit	volume	must	have	a	certain	value.	Let	it	be	n	p	.
We	must	solve	the	equation	in	α



The	integral	is	a	classic	one,	which	can	be	found	in	the	books	in	the	form

	 (5.52)

Immediately,	we	obtain	α	and	substitute	in	Eq.	(5.51),	obtaining

	 (5.53)

Dividing	by	the	number	of	molecules	n	p	,	we	have	the	probability	that	a
molecule	has	a	velocity	between	υ	and	υ	+	dυ

This	corresponds	to	the	velocity	distribution	function

	 (5.54)

This	is	the	Maxwell-Boltzmann	distribution	and	is	shown	in	Fig.	5.9.

Fig.	5.9 The	Maxwell-Boltzmann	velocity	distribution	of	ideal	gas	molecules

Let	us	discuss	this	distribution.	It	is	the	product	of	the	square	velocity	υ	2	and
of	the	Boltzmann	factor	of	kinetic	energy.	The	latter	is	the	probability	per	unit
velocity	space	volume,	the	former	is	proportional	to	the	available	velocity	space
volume	for	a	given	elementary	interval	of	velocities	dυ.	This	volume	is	very
small	when	its	velocity	is	small,	and	grows	with	it.	The	factor	υ	2	dominates	at
small	velocities,	corresponding	to	an	almost	parabolic	growth	in	probability.	At
higher	velocities,	the	decreasing	exponential	factor	gradually	takes	over.	The
probability	has	a	maximum,	υ	p	in	the	figure,	which	is	the	most	probable	velocity



(it	is	the	mode	of	distribution).	Its	value	is	obtained	through	the	usual	methods	of
calculus,	which	gives	us

	 (5.55)

The	mean	values	of	the	velocity	components	are	obviously	zero,	as	we	have
already	noticed.	Such	is	not	the	root	mean	square	velocity	(r.m.s.	velocity,	for
short),	which	is	the	square	root	of	the	mean	of	the	square	velocity.	This
important	quantity	is	obtained	by	computing	the	integral

The	result	is

	 (5.56)

Comparing	this	with	Eq.	(5.55),	we	see	that	the	r.m.s.	velocity	is	larger	than
the	most	probable	velocity.	This	is	a	consequence	of	the	asymmetry	of	the
distribution	function	that	has	a	long	“tail”	on	the	higher	velocity	side.	Notice	that
both	averages	are	inversely	proportional	to	the	square	root	of	the	molecule	mass.
Consider	two	gases	at	the	same	temperature,	N2	and	He,	for	example.	The
smaller	mass	molecules	(He)	move	faster	than	the	heavier	ones	(N2).	The
average	kinetic	energies	are	the	same	for	the	two	gases	at	the	same	temperature.

Let	us	consider	the	orders	of	magnitude.	A	relevant	quantity	is	k	B	T,	which
has	the	dimension	of	energy.	Its	value	at	room	temperature,	T	=	300	K	in	a	round
figure,	is

	 (5.57)
This	is	an	atomic	scale	quantity	and	is	convenient	to	express	in	electronvolts.

We	defined	it	in	Sect.	4.1.	We	recall	its	value	in	joules:

	 (5.58)
In	this	unit,	at	room	temperature,	we	have

	 (5.59)
This	is	an	important	value	to	remember.	Another	relevant	number	is	the

temperature	at	which	k	B	T	=	1	eV.	Calling	it	T(1	eV),	it	comes	out	as

	 (5.60)
Let	us	evaluate,	in	order	of	magnitude,	the	r.m.s.	velocity	at	the	room



temperature	of	the	lightest	gas,	H2.	Neglecting	the	electron	contribution,	the
mass	of	the	molecule	is	two	proton	masses,	Eq.	(1.5),	namely

	 (5.61)
and	thus	we	have	 .

If	we	want	the	r.m.s.	velocity	for	another	gas	at	another	temperature,	we	just
have	to	scale	it	with	the	root	of	the	temperature	to	mass	ratio.	For	example,	for
silver	(monoatomic	molecule,	A	=	107.9)	at	1000	°C	(1273	K),	we	have	

.

Consider	now	a	mixture	of	two	or	more	gases	in	equilibrium.	The	average
kinetic	energies	of	the	molecules	of	the	different	gases	are	equal,	but	the	r.m.s.
velocities	are	different,	as	our	examples	have	just	shown	us.	This	is	also	true	for
a	particulate	suspended	in	a	gas.	This	can	be	approximated	with	a	“gas”	of
microscopic	particles.	In	equilibrium,	their	average	kinetic	energy	is	the	same	as
that	of	the	molecules,	but,	their	masses	being	much	larger,	their	r.m.s.	velocities
are	much	smaller.

Question	Q	5.1.	Consider	a	particulate	of	equal	spherical	particles	of	10	µm
diameter	and	density	of	2000	kg/m3	in	air	at	room	temperature.	Calculate	the
r.m.s.	velocity.

5.8	 Experimental	Controls
The	results	of	the	previous	sections	have	been	reached	through	theoretical
arguments.	The	conclusions	can	be	considered	valid	only	after	having	been
checked	by	the	experiment.	The	experimental	controls	have	been	many.	We	shall
discuss	two	of	them	now.

As	we	noticed	at	the	end	of	the	previous	section,	the	thermal	equilibrium
between	two	mixed	“gases”	may	exist	even	if	one	of	them	is	really	a	powder,	a
set	of	microscopic	corpuscles.	At	equilibrium,	these	particles	have	the	same
average	kinetic	energy	as	the	gas	molecules.	If	the	particle	sizes	are	on	the	order
of	the	micrometer,	they	can	be	seen	with	a	microscope	and	some	characteristics
of	their	motion	can	be	measured.	In	1827,	the	botanist	Robert	Brown	(Scotland,
1773–1858)	was	using	a	microscope	to	observe	grains	of	pollen	of	a	plant
(Clarkia	pulchella,	to	be	exact)	suspended	in	water.	He	observed	minuscule
particles,	ejected	by	the	pollen	grains,	executing	a	continuous,	chaotic,	jittery
motion.	He	thought,	at	first,	that	he	was	observing	living	beings,	but	was	soon
able	to	exclude	that	possibility	after	observing	the	same	phenomenon	in



inorganic	particles	of	similar	size.	This	is	called	Brownian	motion	.
Brownian	motion	was	theoretically	studied	by	Albert	Einstein	(Germany

1879—USA	1955)	in	1905	and	Marian	Smoluchowski	(Austria,	1872–1917)	in
1905-1906.	We	summarize	the	interpretation	as	follows.	The	diameters	of	the
particles	in	suspension,	on	the	order	of	a	micrometer,	as	we	mentioned,	are	still
enormous,	four	orders	of	magnitude	larger	when	compared	to	water	molecules,
which	are	about	half	a	nanometer	across.	Each	of	the	Brown	particles	is
continuously	hit	by	the	water	molecules	at	the	considerable	rate	of	about	1020
per	second.	The	received	impulses	have	all	the	directions,	but	their	effects	do	not
always	average	out	at	zero	if	taken	in	short	enough	intervals	of	time.	In	this	case,
there	might	be	more	collisions	on	one	side	than	on	the	other	and	the	particle	will
jump	in	the	unbalanced	direction.	These	fluctuations	become	more	important	the
smaller	the	size	of	the	particle	in	suspension.

This	phenomenon	was	quantitatively	studied	by	Jean	Baptiste	Perrin	(France,
1870–1942)	in	1908.	To	this	purpose,	he	had	to	prepare	micrometer-size
particles,	all	with	the	same	diameter	and	the	same	mass.	He	succeeded	by
rubbing	gamboge	(a	pigment	extracted	from	the	resin	of	tropical	plants	of	the
genus	Garcinia)	between	his	hands	under	water.	He	obtained	an	emulsion	that,
under	a	microscope,	appeared	to	contain	particles	of	different	sizes.	To	produce	a
uniform	emulsion	(consisting	of	equal	grains),	he	used	a	process	of	fractional
centrifugation,	profiting	off	the	fact	that	the	parts	that	settle	out	first	are	richer	in
larger	grains.	This	was	not	at	all	an	easy	process.	Indeed,	after	several	months	of
careful	work,	Perrin	was	only	able	to	obtain	a	few	decigrams	of	particles	of	the
desired	size	from	one	kilogram	of	gamboge.	Experiments	could	then	start.	With
the	microscope,	he	observed	a	completely	disordered	motion,	which	never
slowed	down	nor	stopped.	He	defined	it	as	eternal	and	spontaneous.	He	also
observed	that	the	smaller	spheres	moved	faster	than	the	larger	ones.

Perrin	designed	and	performed	a	series	of	experiments	to	check	whether	or
not	the	system	of	particles	behaved	as	foreseen	by	statistical	mechanics	.	In	the
first	experiments,	he	studied	the	equilibrium	distribution	of	the	emulsion	of
spherules	under	the	action	of	gravity.	It	was	exactly	what	was	foreseen	in
Eq.	(5.35).	Knowing	the	mass	of	the	spherules	and	the	temperature,	he	could
extract	a	value	of	the	Boltzmann	constant	from	the	data	and	hence	of	the
Avogadro	number	.	Perrin	repeated	the	experiment,	changing	the	mass	of	the
granules,	the	intergranular	liquid	and	the	temperature.	In	all	of	them,	the
resulting	value	of	the	Avogadro	number	was	the	same,	within	the	experimental
uncertainties.

Further	tests	had	to	be	done	on	the	velocity	distribution	.	He	knew,	however,
that	these	could	not	be	directly	measured,	because	the	granules	were	changing



velocity	in	extremely	short	time	periods.	To	get	around	the	problem,	Perrin	put
the	method	theoretically	proposed	in	1905	by	Einstein	into	practice.	Let	us	fix
our	attention	on	one	spherule.	We	fix	a	certain	time	interval	Δt	and	measure	the
distances	Δl	between	the	positions	of	the	particle	in	a	sequence	of	such	intervals.
Notice	that	these	are	not	the	distances	traveled	by	the	spherule	in	those	intervals,
because,	during	this	time,	it	moved	in	a	random	zigzag,	rather	than	straight.
Perrin	projected	the	microscope	image	onto	a	sheet	of	paper	with	the	so-called
camera	lucida	technique.	He	worked	with	an	assistant,	one	of	them	marking	the
paper	with	a	“dot”	to	indicate	the	position	of	the	spherule	under	observation
every,	say,	30	s	whenever	the	other,	who	was	looking	at	the	chronometer,	would
call	out	for	him	to	do	so.	One	such	“dotting”	is	shown	in	Fig.	5.10.	The	radius	of
the	spherule	was	0.53	µm.	The	positions	were	taken	every	Δt	=	30	s.	Einstein
had	given	the	relation	between	the	velocity	distribution	and	Δl	distribution,	and
Perrin	was	able	to	show	that	the	gamboge	particles	suspended	in	“gas”	behaved
as	foreseen	by	statistical	mechanics.	Once	more,	the	value	of	the	Avogadro
number	extracted	from	the	data	was	the	correct	one.

Fig.	5.10 Positions	of	a	0.53	µm	diameter	spherule	in	water	every	30	s

Thanks	to	further	developments	in	the	technique,	Perrin	was	also	able	to
experimentally	verify	the	energy	equipartition	between	translational	and
rotational	kinetic	energy.	The	difficulty	was	that	the	Einstein’s	formula	predicted
a	mean	rotation	of	approximately	8°	per	1/100	of	a	second	for	a	sphere	of	1	µm
diameter.	This	is	too	rapid	to	be	measurable.	Perrin	overcame	the	difficulty	by
producing	bigger	spheres	of	mastic	of	about	12	µm	in	diameter.	They	were
limpid	like	glass	spheres.	The	rotation	was	not	observable.	Some	of	them,
however,	contained	a	visible	defect	that	could	be	used	as	a	mark	by	which	the
rotational	Brownian	movement	could	be	perceived.	He	noted	at	equal	intervals
of	time	the	successive	positions	of	a	certain	defect,	from	which	it	was	possible	to
find	the	orientation	of	the	sphere	at	each	of	these	moments	and	to	calculate	its



rotation	from	one	moment	to	the	next.	He	found	the	average	rotation	kinetic
energy	per	degree	of	freedom	to	be	equal	to	the	translational	one	within	the
experimental	accuracy	of	about	10	%.

The	direct	experimental	verification	of	the	gas	kinetic	model	became
possible	starting	in	1911,	when	Lois	Dunoyer	(France,	1880–1963)	produced	the
first	molecular	rays	or	molecular	beams	.	The	possibility	itself	of	producing	the
beams	is	a	direct	proof	of	one	fundamental	assumption	of	the	theory,	namely
that,	in	gases,	the	molecules	move	in	straight	lines	until	they	collide	with	another
molecule	or	a	wall	of	the	containing	vessel.

The	next	step,	credited	to	Otto	Stern	(Germany,	1892–1969),	was	the	direct
measurement	of	the	velocities.	A	typical	arrangement	is	shown	in	Fig.	5.11.	The
oven	F	contains	the	gas	under	study	at	a	high	temperature	T.	A	small	aperture	in
the	wall	of	the	oven	emits	molecules	in	a	range	of	directions.	A	second	aperture,
selects	one	direction	and	produces	the	molecular	beam.	The	beam	is	in	a
vacuum,	to	avoid	its	molecules	hitting	any	environmental	gas	molecules.	After
the	second	slit,	there	is	a	velocity	selector.	In	its	simplest	form,	this	is	made	out
of	two	disks,	one	separated	from	the	other	at	a	distance	l	of	several	centimeters.
The	disks	are	on	the	same	axis,	have	two	slits	out	of	phase	by	an	angle	θ,	and
rotate	with	angular	velocity	ω.	The	detector	R	placed	beyond	the	slits,	can	be
reached	only	by	the	molecules	whose	velocity	is	such	that	the	time	taken	to	go
through	the	distance	l	is	exactly	the	same	as	that	taken	by	the	disks	to	rotate	by
the	angle	θ.	Namely,	it	should	be	ω/θ	=	υ/l.	In	other	words,	only	the	molecules
with	speed	υ	=	lω/θ,	within	an	interval	determined	by	the	width	of	the	slits,	are
detected.

Fig.	5.11 Molecular	beam	experiment	for	measuring	the	molecular	speeds

The	experiment	is	done	taking	data	with	a	series	of	angular	velocity	values,



corresponding	to	the	same	number	of	molecule	velocities,	in	the	above-
mentioned	(small)	interval.	In	the	next	section,	we	shall	discuss	a	detector	for	a
particular	type	of	molecule,	the	alkali	metals.	In	any	case,	the	detector	delivers
an	electric	current,	whose	intensity	is	proportional	to	the	number	of	molecules
on	the	detector	per	unit	time.	This	number	is	proportional	to	the	number	of
molecules	per	unit	volume	with	velocities	in	the	selected	interval,	multiplied	by
the	velocity	itself.	If	kinetic	theory	is	correct,	the	detector’s	current	intensity	I
should	then	be

	 (5.62)
where	α	is	a	proportionality	constant	that	we	do	not	need	to	determine.
Notice	the	extra	power	of	velocity	in	front	of	the	exponential.

Figure	5.12	shows	the	results	of	a	precise	measurement	made	by	R.C.	Miller
and	P.	Kausch	in	1955.1	They	developed	a	velocity	selector	based	on	the	same
principle	as	the	one	we	described.	In	brief,	instead	of	two	disks,	they	used	a
cylinder	with	a	helical	slit,	as	if	it	were	a	continuous	series	of	disks	instead	of
two	at	a	distance.	The	detector	used	a	hot	tungsten	wire,	based	on	the	surface
ionization	effect,	which	we	shall	describe	in	the	next	section.	The	curve	in	the
figure	is	Eq.	(5.54)	(normalized	to	the	data)	as	a	function	of	the	selected	velocity
divided	by	its	most	probable	calculated	value	υ	p	.	The	temperature	was
T	=	466	±	2	K,	and	the	pressure	reported	in	the	insert	in	the	figure	is	the	pressure
of	the	K	gas	in	the	oven.	The	calculated	value	of	the	most	probable	velocity	was
υ	p		=	628	±	2	m/s,	while	the	measured	one	was	υ	p		=	630	±	2	m/s.	As	one	can
see,	the	agreement	between	theory	and	data	is	excellent.	However,	looking
carefully,	one	notices	that,	at	the	lowest	velocities,	the	measured	points	are
systematically	a	bit	below	the	curve.	This	is	an	instrumental	effect,	due	to	the
collisions	of	the	potassium	molecules	when	they	are	in	the	oven.



Fig.	5.12 Velocity	distribution	measure	by	R.C.	Miller	and	P.	Kaush	in	a	K	beam

5.9	 Applications	of	the	Boltzmann	Law
The	Boltzmann	law	states	that,	in	a	macroscopic	system	in	equilibrium	at	the
temperature	T,	the	ratio	between	the	number	of	microscopic	components
(molecules	or	others)	per	unit	volume	n	p1	with	energy	U	1	and	number	per	unit
volume	n	p2	with	energy	with	energy	U	2	is

	 (5.63)
The	Boltzmann	law	is	extremely	important,	because	it	appears	ubiquitously

in	all	the	statistical	systems	at	equilibrium.	In	a	number	of	circumstances,	the
Boltzmann	factor	,	as	the	exponential	on	the	right-hand	side	is	called,	is	enough
to	describe	the	orders	of	magnitude	of	a	problem.	If	one	considers	the	details,
this	factor	might	be	multiplied	by	some	function	of	temperature.	However,	in
practice,	the	exponential	varies	with	temperature	much	quicker	than	any	other
function,	dominating	the	behavior	of	the	system.	We	shall	now	consider	several
examples.	Some	of	them	involve	rather	complicated	situations,	but	we	shall	limit
ourselves	to	rough	evaluations.	This	type	of	evaluation	is	often	extremely	useful,
especially	in	a	complex	problem.

Evaporation	of	a	liquid.

Consider	a	liquid	and	its	vapor	in	a	container	in	equilibrium	at	the
temperature	T.	We	have	already	discussed	the	problem	from	the	thermodynamic,
hence	macroscopic,	point	of	view.	Let	us	discuss	it	now	from	the	mechanical



statistical,	namely	microscopic,	point	of	view.	We	shall	find	that	the	Clapeyron
equation	is	a	consequence	of	classical	mechanics.

Let	n	pg	and	n	pl	be	the	number	of	molecules	per	unit	volume	in	the	vapor	and
liquid	phases,	respectively.	In	a	closed	system,	their	sum,	n	pg		+	n	pl	,	is
obviously	a	constant.	The	system	is	in	statistical	equilibrium.	At	any	time
interval,	some	molecules	in	the	liquid	have	enough	kinetic	energy	and	are	close
enough	to	the	surface	to	skip	into	the	vapor	(winning	the	attraction	of	their
“liquid	sisters”),	while	quite	a	few	vapor	molecules,	on	average,	fall	into	the
liquid.

Let	W	be	the	work	necessary	to	take	a	molecule,	with	zero	kinetic	energy,
from	inside	the	liquid	to	outside	of	it.	This	is	the	energy	difference	between
outside	and	inside.	The	Boltzmann	law	says	that	the	ratio	of	the	numbers	of
molecules	per	unit	volume	outside	and	inside	is	the	Boltzmann	factor:

	 (5.64)
If	we	want	to	be	rigorous,	this	expression	does	not	tell	us	very	much.

Suppose,	for	example,	we	want	to	know	the	details	of	the	dependence	on
temperature	of	n	pg	,	and	consequently	of	the	vapor	pressure	to	which	it	is
proportional.	We	then	write

where	the	temperature	dependence	has	been	explicitly	written.	On	the	right-
hand	side,	n	pl	is	the	number	of	molecules	in	the	liquid	phase	per	unit	volume.
This	quantity	depends	on	temperature,	because	the	volume	of	the	liquid	depends
on	temperature	and	the	Boltzmann	law	does	not	tell	us	how.	However,	if	we	are
far	from	the	critical	point	(where	gas	and	liquid	densities	are	equal),	then	it	is	n
pg		≪	n	pl	,	namely	the	exponential	factor	is	very	small.	To	put	it	another	way,	the
exponent	is	large	in	absolute	value

	 (5.65)
Under	these	conditions,	a	small	variation	in	temperature	makes	the

Boltzmann	factor	vary	strongly,	dominating,	in	this	way,	the	temperature
dependence	of	n	g	.	Consider	water,	for	example.	Its	vaporization	molar	heat	is
40.5	kJ/mole.	This	means	that	40.5	kJ	are	needed	to	take	an	Avogadro	number	of
molecules	outside	the	liquid.	The	work	W	for	a	single	molecule	is	then	40.5	kJ/N
A	.	Expressing	energy	in	electronvolts,	we	find	W	=	0.4	eV.	Notice	that	W	is
substantially	the	depth	of	the	van	der	Waals	potential.	The	exponential	factor	in



Eq.	(5.65)	at	room	temperature	is

	 (5.66)
which	is	very	small.

In	practice,	if	we	are	interested	in	the	behavior	of	the	system	in	broad	terms,
we	can	consider	n	l	constant,	at	least	in	a	limited	temperature	range,	and	write

	 (5.67)
Let	us	now	look	at	what	thermodynamics	specifically	says.	This	is	the

Clapeyron	equation	for	one	mole.	If	p	is	the	saturated	vapor	pressure,	V	g	and	V	l
the	molar	volumes	of	vapor	and	liquid,	respectively,	and	Q	V	the	molar	latent
heat	of	vaporization,	the	equation	is

	 (5.68)
Under	the	conditions	discussed	in	Sect.	5.7,	the	equation	can	be

(approximately)	integrated,	obtaining

	 (5.69)
Considering	that	the	vapor	pressure	is	proportional	to	the	numeric	density	of

the	molecules	in	vapor	gas	n	pg	,	we	see	that	Eqs.	(5.67)	and	(5.69)	say	the	same,
with

	 (5.70)
Namely,	the	molar	vaporization	heat	is	the	work	to	be	done	against	the	van

der	Waals	forces	to	take	an	Avogadro	number	of	molecules	(one	mole)	out	of	the
liquid	in	the	gas.	Let	us	now	compare	the	two	approaches,	thermodynamic	and
statistical	mechanic,	which	led	to	the	same	result.	Thermodynamics	allows	us	to
find	the	Clapeyron	equation	Eq.	(5.68),	which	is	exact.	In	addition,	it	holds	for
the	entire	phase	transition,	using	the	proper	parameters.	The	latter,	namely	the
molar	volumes	of	the	two	phases,	cannot	be	foreseen,	not	even	in	principle.
Statistical	mechanics,	on	the	other	hand,	has	given	us,	with	very	simple
arguments	starting	from	mechanics,	the	approximate	Eq.	(5.67).	In	such	a	way,	it
has	shown	the	physical	meaning	of	the	equation.	In	addition,	it	allows	us	to
calculate,	at	least	for	simple	systems,	Q	V	and	V	g	–V	l	starting	from	knowledge	of
the	intermolecular	forces.	The	two	approaches	are	complementary.
Thermodynamics	is	more	powerful,	especially	for	complex	systems,	but	it	tends
to	hide	the	physical	meaning.



Thermionic	emission	.

As	we	have	already	stated,	metals	are	solid	bodies	having	microcrystalline
structure.	Namely,	they	are	aggregates	of	microcrystals	that	are	invisible	to	the
naked	eye	but	can	be	seen	with	a	microscope.	The	atoms	of	the	microcrystals	are
not	neutral,	but	ionized,	because	some	(one	or	two,	in	general)	of	their	electrons
are	not	bound	to	“their”	atom,	but	are	free	to	move	about	inside	the	crystal.	They
cannot,	however—at	least	in	a	large	majority	as	we	shall	now	see—abandon
crystal	entirely,	being	globally	attracted	by	the	ions.	All	these	electrons	form	a
sort	of	gas,	which	makes	the	metal	a	good	conductor,	both	of	heat	and	electricity.
They	are,	consequently,	called	conduction	electrons	.

The	work	that	is	necessary	to	take	an	electron	from	inside	to	outside	the
metal,	at	zero	kinetic	energy,	is	the	work	function,	which	we	shall	again	call	W	.
It	is	characteristic	of	the	metal.	Its	magnitude	is	on	the	order	of	the	electronvolt.

Consider	the	metal	at	temperature	T.	This	is	also	the	temperature	of	the
conduction	electrons’	gas.	Some	of	these,	those	hotter	and	closer	to	the	surface,
may	be	able	to	jump	out.	To	have	equilibrium,	as	in	the	case	of	evaporation,	the
system	must	be	closed	inside	a	container	and	no	other	gas	must	be	present.	We
can	make	a	wire	of	the	metal,	close	it	inside	a	glass	envelope	and	evacuate	it.	A
gas	of	free	electrons,	namely	those	not	bound	to	the	metal,	forms	inside	the
envelope.	Their	density	is	extremely	small	at	normal	temperatures	but	increases
as	the	temperature	increases,	as	we	shall	see.	In	every	time	interval,	there	are
electrons	coming	out	of	and	electrons	falling	inside	the	metal.	The	two	rates	are
equal	at	the	statistical	equilibrium.	This	situation	is	very	similar	to	evaporation.
We	can	say	that	the	number	density	of	electrons	in	the	“gas”	n	pg	depends	upon
temperature	according	to	the	Boltzmann	law

	 (5.71)
where	n	p0	is	the	number	of	electrons	in	the	metal	per	unit	volume.	Once
more,	it	is	approximately	constant,	namely	its	variations	in	regard	to	temperature
are	much	smaller	than	those	of	the	Boltzmann	factor.	To	be	precise,	n	p0	is	not
rigorously	constant	because	the	volume	depends	on	temperature.	The	effect	we
are	considering	is	called	the	thermionic	effect	.	It	is	exploited	in	the	electronic
valves.

We	can	do	an	experiment	to	control	Eq.	(5.71)	as	follows.	We	make	a	thin
wire	of	the	metal	under	study,	a	few	centimeters	long	and	a	couple	of	millimeters
in	diameter,	we	fold	it	and	position	it	on	the	axis	of	the	structure,	as	in	Fig.	5.13.
We	place	the	folded	wire	inside	of	a	metallic	cylinder.	We	enclose	the	structure
in	a	glass	envelope,	having	two	conductors	joined	to	the	wire	and	cylinder



coming	out	of	the	glass	container,	as	shown	in	Fig.	5.13.	We	evacuate	the	air	and
seal	the	envelope	hermetically.	We	have	thus	built	a	thermionic	diode.	We	get	an
electric	current	through	the	wire	to	heat	it	at	a	high	temperature,	on	the	order	of
1000	K.	The	work	functions	are	typical,	on	the	order	of	1	eV	corresponding	to	k
B	T	=	11,600	eV.	The	Boltzmann	factor	is	on	the	order	of	e−10.	Consequently,	in
this	case	as	well,	it	dominates	the	temperature	dependence.

Fig.	5.13 Thermionic	diode

In	our	experiment,	we	do	not	establish	the	equilibrium.	Instead,	we	apply	a
potential	difference	between	the	wire	(the	cathode)	and	the	small	tube	(the
anode),	generating	an	electric	field	in	the	space	between	them.	The
corresponding	force	accelerates	the	electrons	as	soon	as	they	exit	the	wire	and
brings	them	to	the	anode.	We	measure	the	current	leaving	the	cathode.	In	this
cylindrical	geometry,	which	is	used	in	practice,	the	electron	density	in	the	gas	n
pg	is	not	the	same	as	in	the	entire	volume,	but	is	a	decreasing	function	of	the
distance	from	the	cathode.	To	make	the	argument	simpler,	let	us	assume	a	plane
geometry,	namely	that	the	cathode	and	anode	are	two	parallel	planes	of	area	A.
Assume	also	that	all	electrons	have	the	same	velocity	υ.	The	number	of	electrons
leaving	the	cathode	in	one	second	is	their	number	in	a	parallelepiped	of	base	A
and	height	υ,	namely	n	pg	υA.	The	current	intensity	is	this	number	times	the
electron	charge	q	e	.	In	reality,	electrons	have	different	velocities,	as	we	know,



and	we	must	take	a	suitable	average	〈υ〉,	which	we	do	not	need	to	specify.
Finally,	we	can	write	for	the	current	intensity

	 (5.72)
Once	more,	the	equation	does	not	tell	us	everything,	because	<	υ	>	is	an

unknown	function	of	temperature.	The	corresponding	experimental	law	was
found	by	Owen	Williams	Richardson	(UK,	1879–1959)	in	1901.	This	was	only
four	years	after	the	discovery	of	the	electron	by	Joseph	John	Thomson	(UK,
1856–1940).	The	Richardson	law	is

	 (5.73)
which	contains	an	extra	factor	T	2.	This	factor	is	important	if	we	are	looking
at	the	details,	but	its	temperature	dependence	is	much	slower	than	that	of	the
Boltzmann	factor.

Surface	ionization	.

The	detection	of	an	atomic	or	molecular	beam	(such	as	the	ones	we	have
mentioned	in	Sect.	5.8)	presents	some	difficulties.	These	are	due	not	only	to	the
fact	that	molecules	are	neutral,	but	also	to	the	fact	that	the	characteristics	of	the
beam	molecules	do	not	differ	much	from	those	of	the	residual	gas	that	is	always
present,	even	in	an	evacuated	apparatus.	To	understand	the	orders	of	magnitude,
consider	that	the	beam	densities	might	be	typically	on	the	order	of
1014	atoms/m3	and	that	velocities	are	on	the	order	of	500	m/s,	which	is	on	the
same	order	of	the	residual	gas	molecules’	velocity.	If	the	vacuum	residual
pressure	is,	for	example,	10−9	Pa,	the	molecule	density	is	3	×	1015	molecules/m3,
which	is	on	the	same	order	as	the	beam.

A	particularly	lucky	case	is	that	of	alkali	metals	,	which	can	be	detected	with
efficiency	close	to	100	%.	This	is	due	to	the	circumstance	that,	for	them,	one	of
the	electrons	is	only	weakly	bound	to	the	atom	(for	this	reason,	they	are
monovalent,	as	we	already	mentioned).	This	is	called	valence	electron.	The
binding	energy,	namely	the	work	to	be	done	to	take	the	electron	off,	is	of	a	few
electronvolts.	This	is	the	ionization	energy	I	(for	example,	I	=	5.2	eV	for	Li,
5.1	eV	for	Na,	4.3	eV	for	K).

On	the	other	hand,	the	work	function	W	of	certain	metals,	like	tungsten	and
platinum,	is	particularly	large	(W	=	6	eV	for	W),	larger	than	the	ionization
energy	of	the	alkalis.	As	a	consequence,	if	an	alkali	atom	is	very	close	on	the
atomic	scale,	namely	by	a	fraction	of	nanometers,	to	the	tungsten	surface,	it
becomes	energetically	favorable	for	its	valence	electron	to	jump	into	the	metal.



This	happens	with	a	certain	probability,	which	is,	once	more,	given	by	the
Boltzmann	factor	.	In	other	words,	the	ratio	between	the	number	of	atoms	that
ionizes	n	p1	and	the	atoms	that	remain	neutral	n	p0	is

	 (5.74)
Notice	that,	in	this	case,	W	>	I;	hence,	the	exponent	is	positive	and	the	larger

part	of	the	electrons	goes	to	the	tungsten.	This	is	the	surface	ionization
phenomenon.

To	detect	an	alkali	atom	beam,	we	prepare	a	tungsten	wire	with	a	very	clean
surface	and	bring	it	to	a	high	temperature	(otherwise,	the	atoms	get	absorbed).
We	position	a	small	metallic	plate	near	to	the	wire	and	give	it	a	negative	electric
potential.	The	beam	atoms	hit	the	wire,	a	large	majority	leaving	an	electron	and
bunching	back	as	positive	ions,	and	are	attracted	by	the	plate.	The	effect	is	an
electric	current	that	we	can	measure.	Let	us	evaluate	the	order	of	magnitude	of
its	intensity.	Assuming	100	%	efficiency,	the	current	intensity	is	the	number	of
ions	of	the	beam	per	unit	volume	times	the	velocity	of	the	ions	times	the	area	of
the	detecting	wire	times	the	charge	of	the	ion.	With	the	above	mentioned	values
of	density	and	velocity	and	a	wire	of	0.1	mm	diameter	1	cm	long	(area	10−6	m2),
we	have	I	=	1014	atoms/m3	×	5	×	102	m/s	×	10−6	m2	×	1.6	×	10−19	=	8	nA,
which,	as	a	current	intensity,	is	small	but	not	difficult	to	measure.

Gas	molar	heats

We	conclude	the	section	by	giving	a	few	hints	as	to	the	quantum	mechanical
explanation	of	the	freezing	out	of	the	degrees	of	freedom	and	consequently	of	the
molar	(or	specific)	heats	we	discussed	in	Sect.	5.2.	Let	us	fix	our	attention	on	the
diatomic	molecule,	specifically	on	its	oscillations.	We	represent	the	molecule	as
a	harmonic	oscillator.	Classically,	with	continuity,	the	oscillation	energy	can
have	any	value	from	a	certain	minimum,	say	E	0,	and	0.	The	minimum	energy
occurs	when	the	two	atoms	stand	with	zero	velocity	at	the	distance	at	which	the
potential	energy	is	a	minimum,	and	the	maximum	energy,	zero,	occurs	when
they	break	apart.	Quantum	mechanics	tells	us	that	this	is	not	true.	Energy	is
“quantized”.	The	total	energy	of	the	oscillator	can	only	have	discrete	values
differing	one	from	the	next	by	the	well-defined	quantity	ΔU.	In	other	words,	the
energies	the	quantum	harmonic	oscillator	can	have	are	in	the	sequence

	 (5.75)
The	Boltzmann	law,	however,	still	holds.	Let	us	consider	the	state	of

minimum	energy	U	0	and	that	of	energy	U	1	immediately	following	it.	The	ratio
of	the	probabilities	of	a	molecule	being	in	the	two	states	is,	once	more,	given	by



the	Boltzmann	factor,	namely

	 (5.76)

If	the	temperature	is	low	enough,	such	that

	 (5.77)
then	the	absolute	value	of	the	negative	exponent	on	the	right-hand	side	of
Eq.	(5.76)	is	large	and	the	exponential	is	extremely	small.	Consequently,	the
probability	that	the	oscillator	can	have	the	smallest	energy	larger	than	the
minimum	is	extremely	small.	Clearly,	this	is	even	truer	for	the	higher	energies.	If
we	now	consider	a	set	of	a	large	number	of	identical	oscillators,	we	see	that
practically	all	of	them	must	be	in	the	lowest	energy	state.	The	degrees	of
freedom	internal	to	the	molecule	cannot	be	excited,	because	they	are	“frozen”.

Let	us	look	more	closely	at	the	processes.	The	energy	can	also	“equipart”	to
the	internal	motion	only	if	energy	can	be	transferred	in	the	collisions	from
translation	or	rotation	energy	to	vibrations.	But,	for	quantum	mechanics,	there	is
a	minimum	energy	transfer,	a	quantum	of	energy	,	which	is	ΔU.	Clearly,	if	the
mean	kinetic	energies	of	the	translational	and	rotational	motions,	i.e.,	k	B	T,	are
much	smaller	than	the	energy	quantum,	this,	in	practice,	cannot	happen.
Classically,	on	the	contrary,	energy	can	be	transferred	in	any	quantity,	even
minuscule,	and	equipartition	always	happens.	We	see	how	the	problem	is	in	the
very	nature	of	classical	physics,	in	which	natural	quantities	are	continuous.
Some	of	them,	including	energy,	are	not.	According	to	a	Latin	proverb,	Natura
non	facit	saltus	=	Nature	does	not	make	jumps.	But	Nature	does	what	she	likes
and	indeed,	facit	saltus.

On	the	other	hand,	if	the	temperature	is	high	enough,	such	that

	 (5.78)
then	k	B	T	is	much	larger	than	the	energy	quantum	ΔU	and	quantum
mechanics	tends	toward	classical	mechanics.	The	latter	then	gives	correct
predictions.	We	understand	now	how	classical	mechanics	predictions	work	better
at	high	enough	temperatures.	We	profit	from	a	very	general	statement.	Quantum
mechanics	does	not	show	that	classical	mechanics	is	wrong.	Quantum	mechanics
is	valid	over	a	much	wider	range,	but	it	includes	classical	mechanics,	tending
toward	it	under	well-defined	conditions.

We	have	seen	that	the	temperature	limits	of	classical	mechanics,	the	Debye
temperature,	are	different	for	different	gases.	The	reason	is	that	the	energy
quantum	ΔU	is	different	for	different	gas	molecules.	This	quantity	is



proportional	(by	a	fundamental	constant	called	the	Planck	constant)	to	the	proper
oscillation	frequency	of	the	molecule,	given	by	Eq.	(5.17)	for	a	diatomic
molecule.	As	a	matter	of	fact,	the	interatomic	forces,	and	consequently	the
effective	spring	constant	κ,	do	not	differ	very	much	from	one	gas	to	another.
However,	the	atomic	masses,	and	consequently	the	reduced	mass	µ,	change
considerably.	As	a	consequence,	the	proper	frequency	is	lower	for	the	heavier
gases	and	classical	mechanics	gives	correct	predictions	for	them	down	to	lower
temperatures.	The	explanation	of	the	limits	of	classical	mechanics	for	the	molar
heats	of	solids	(Sect.	5.3)	is	similar.

5.10	 Nature	of	Irreversibility
All	thermodynamic	processes	can	ultimately	be	reduced	to	the	motions	of	their
molecules	and	atoms,	namely	to	mechanical	processes.	We	have	learnt	that,	at
the	microscopic	level,	all	forces	are	conservative.	As	a	consequence,	all
mechanical	processes	at	the	molecular	level	are	reversible.	This	seems	to	stand
in	contradiction	to	the	fact	that	the	real	thermodynamic	processes	are
irreversible.	We	shall	now	see	that	the	contradiction	is	only	apparent.	Let	us	start
by	discussing	two	examples.

We	build	a	simple	pendulum,	attaching	a	small	sphere	to	a	thin	wire	that	we
fix	to	the	ceiling	of	a	box	with	adiabatic	walls,	as	in	Fig.	5.14a.	The	box,	which
is	closed	off	by	insulating	walls,	also	contains	air.	The	system	is	in	mechanical
and	thermodynamic	equilibrium.	In	particular,	pendulum	and	air	have	the	same
temperature.	We	take	the	pendulum	out	of	its	mechanical	equilibrium	position
and	let	it	go.	The	system	is	no	longer	in	equilibrium.	The	oscillations	continue
for	a	while,	but	their	amplitude	gradually	decreases,	and	finally,	the	pendulum
comes	to	rest.	The	system	is	back	in	mechanical	and	thermodynamic
equilibrium.	Measuring	with	a	sensitive	thermometer,	we	find	that	the	final
temperature	of	the	system	is	higher	than	when	we	began.

Fig.	5.14 Statistical	non-equilibrium	states	of	systems	of	molecules.	a	Partially	ordered	motions	in	a



pendulum,	b	ordered	motion	in	a	box

Let	us	now	consider	the	pendulum	as	a	system	of	molecules,	and	compare	its
status	at	its	first	passage	through	the	equilibrium	position,	when	all	the
macroscopic	energy	is	kinetic,	with	that	at	the	final	position.	The	macroscopic
kinetic	energy	of	the	body	has	disappeared,	having	transformed	in	the	kinetic
energy	of	the	disordered	thermal	motion	of	its	molecules,	as	certified	by	the
increase	in	temperature.	If	we	only	consider	the	(macroscopic)	mechanical
energy,	we	think	that	the	process	has	dissipated	energy,	but	when	we	consider
the	microscopic	motion	as	well,	we	see	that	energy	was	conserved.	This	is	the
first	law	of	thermodynamics.	Let	us	look	at	the	process	from	the	point	of	view,
so	to	speak,	of	the	pendulum	molecules.	Initially,	their	motion	has	two
components,	an	ordered	one	in	which	all	of	them	have	the	same	velocity	due	to
the	motion	of	the	pendulum	and	a	disordered	one	corresponding	to	the	internal
kinetic	energy.	In	the	final	state,	the	“ordered”	kinetic	energy	has	transformed
into	kinetic	energy	of	the	disordered	motion	of	the	pendulum	and	air	molecules.
Clearly,	the	initial	energy	can	be	distributed	amongst	the	huge	number	of
molecules	in	an	incredibly	large	number	of	equivalent	ways.	In	other	words,	the
final	state	in	which	the	motion	of	the	pendulum	has	ceased	can	be	realized	in	a
number	of	molecular	states	much,	much	larger	than	the	initial	state	in	which	a
large	fraction	of	energy	is	in	the	ordered	motion.

The	second	example	is	a	thought	experiment,	shown	in	Fig.	5.14b.	A	beam
of	molecules	enters	through	a	hole	in	the	wall	of	a	container	in	which	we	had
created	a	complete	vacuum.	This	is	impossible	in	practice,	but	we	are	dealing
with	a	thought	experiment.	In	the	initial	state,	all	the	molecules	move	orderly	in
the	same	direction,	one	after	the	other.	The	state	is	not	of	thermodynamic	or
statistical	equilibrium.	After	a	certain	number	of	molecules	have	entered,	we
close	the	hole.	The	molecules	will	repeatedly	hit	the	walls	of	the	container.	At
the	nanometric	scale,	any	real	“plane”	wall	is	not	a	plane	at	all,	but	shows	bumps
and	hollows	of	different	sizes,	shapes	and	directions.	Consequently,	each
collision	changes	the	direction	of	the	incoming	molecule	casually	and
unpredictably.	Soon,	the	motion	of	the	molecules	is	completely	disordered.	They
move	around	the	entire	container	in	all	directions	in	the	chaotic	motion	of	the
ideal	gas.	If	we	repeat	the	experiment,	we	always	obtain	the	same	result.	The
initial	state	can	only	be	realized	in	a	few	molecular	arrangements,	the	final	one
in	an	enormous	number	of	molecular	positions	and	velocities.

The	described	processes	are	completely	compatible	with	the	mechanical
reversibility.	Suppose	we	can	operate	on	the	system	at	a	certain	instant	by
leaving	all	the	molecules	in	their	position	and	inverting	all	their	velocity	vectors.



The	subsequent	motion	will	be	the	exact	original	one	running	inversely.	We
might,	ideally,	have	shot	a	movie	of	the	first	process.	If	we	were	to	play	it
backwards,	we	would	see	the	second	process.	Molecules	will	hit	one	another	and
the	walls,	but	after	the	exact	same	time	that	was	passed	since	we	closed	the	hole,
all	the	molecules	would	be	moving	in	order	in	the	same	direction,	exiting	the
hole	one	after	the	other.

The	conclusion,	a	theorem	proved	by	Boltzmann	,	is	that	the	transition	from
a	thermodynamic	non-equilibrium	to	the	equilibrium	state	corresponds	to	the
transition	from	a	state	that	can	be	realized	at	the	microscopic	level	in	a	small
number	of	ways	to	one	that	can	be	realized	in	an	enormous	number	of	ways.	The
thermodynamic	equilibrium	state	is	the	state	with	the	maximum	possible
microscopic	realizations.	We	see	that	the	second	law	of	thermodynamics	has	a
probabilistic	nature.	In	principle,	the	passage	of	heat	from	a	colder	to	a	hotter
body	and	the	spontaneous	transformation	of	internal	energy	into	mechanical
macroscopic	energy	(and	no	other	effects	in	both	cases),	are	not	rigorously
impossible,	but	they	are	extremely	improbable.	The	irreversibility	of	the
thermodynamic	processes	is	ultimately	due	to	the	enormous	number	of
molecules.

The	number	of	molecules	in	the	macroscopic	bodies	is	really	enormous.	As	a
consequence,	the	words	“extremely	improbable”	do	effectively	mean
“impossible”.	Let	us	look	at	an	example:	the	free	expansion	of	an	ideal	gas.	We
have	an	adiabatic	container	divided	into	two	halves	by	a	wall.	Initially,	the	gas	is
in	one	half,	while	the	other	half	is	empty.	We	open	a	small	hole	in	the	separating
wall	and	the	gas	expands	to	occupy	the	entire	container.	Its	volume	has	doubled
and,	as	we	know,	the	temperature	has	not	changed.	In	the	final	state,	each
molecule	in	its	disordered	motion,	on	average,	spends	half	of	the	time	in	the	half
volume	on	the	left,	half	of	the	time	on	the	right.	As	a	consequence,	the
probability	of	it	being	in	the	initial	volume	is	½.	The	gas	being	ideal,	its
molecules	are	independent	of	one	another.	Hence,	the	probability	of	finding	N
molecules	on	the	same	side	is	(1/2)	N		=	2–N	.	The	number	of	molecules	in	a	mole
is	the	Avogadro	number.	Its	order	of	magnitude	is	1023.	The	probability	of
finding	all	of	the	molecules	on	one	side	is	then	 ,	an	inconceivably	small
number.	This	means	that	we	might	be	able	to	see	all	of	the	gas	in	half	of	the
container	once	in	 	experiments.	If	we	were	able	to	do	such	an	experiment	in
one	second,	this	would	happen	every	one	million	times	the	age	of	the	universe.

However,	if	the	number	of	molecules	in	the	system	is	not	so	huge,
spontaneous	displacements	from	equilibrium	are	observable.	These	are	small	and
last	for	only	brief	intervals	of	time.	They	are	called	fluctuations	.	As	a	matter	of



fact,	we	have	already	seen	an	example;	the	Brownian	motion	.	Consider	one	of
the	Perrin	spherules	a	few	micrometers	in	diameter	suspended	in	water.	The
number	of	collisions	per	second	of	a	water	molecule	with	a	particle	is	huge,	on
the	order	of	1020.	Sometimes,	the	momentum	that	the	particle	receives	from	the
collisions,	for	example,	on	its	left	are	larger	than	that	from	those	on	its	right.	It
then	starts	moving	to	the	right.	A	bit	of	thermal	energy	has	transformed	into
kinetic	energy	of	an	ordered	motion	of	a	micrometer-size	body.	Locally,	a	small
transformation	from	disorder	into	order	has	taken	place.	At	this	scale	the
phenomenon	is	not	impossibly	improbable.	However,	for	particles	a	little	larger,
the	process	is	not	observable.

Other	examples	are	the	temperature	and	density	fluctuations.	In	any	small
region	of	a	body,	these	quantities	are	not	rigorously	constant,	but	change	a	bit,
going	both	up	and	down.	However,	these	fluctuations	are	extremely	small.	For
example,	in	a	milligram	of	water	at	room	temperature,	the	temperature
fluctuations	are	on	the	order	of	10−8	K	(or	10	nK).

Boltzmann	noticed,	with	reference	to	these	phenomena,	that

…the	existence	of	such	cases	does	not	disprove	our	theorem.	On	the
contrary	the	theory	of	probability	itself	shows	that	the	probability	of	such
cases	is	not	mathematically	zero,	only	extremely	small.

5.11	 Entropy	and	Thermodynamic	Probability
We	shall	now	translate	the	arguments	of	the	preceding	section	into	mathematical
equations.	The	second	law	of	thermodynamics	says	that	the	non-equilibrium
states	of	any	isolated	thermodynamic	system	evolve	spontaneously	towards
states	of	larger	entropy.	This	corresponds,	from	the	statistical	point	of	view,	to
the	transition	to	a	state	that	can	be	realized	in	a	much	larger	number	of	ways.
Clearly,	the	thermodynamic	state	function	entropy	is	connected	to	the	number	of
possible	microscopic	realizations.	To	express	this	connection,	we	must
distinguish,	for	a	given	system,	its	thermodynamic	state,	called	its	macrostate,
and	its	microscopic	state,	called	its	microstate	.	A	macrostate	is	defined	by	the
values	of	the	thermodynamic	variables	(volume,	temperature,	pressure,
concentration,	etc.).	A	microstate	is	a	mechanical	state	of	molecules,	defined	by
the	coordinates	and	velocities	of	all	the	molecules	(6N	variables	in	total,	if	N	is
the	number	of	molecules).	Obviously,	if	we	specify	the	macrostate	of	the	system,
we	do	not	define	its	microstate.	In	other	words,	a	given	macrostate	corresponds
to	a	certain	number	of	microstates	that	realize	it.	This	number	is	called	the



statistical	weight	or	thermodynamic	probability	of	the	macrostate.	The	adjective
“thermodynamic”	is	used	because	the	quantity	is	a	number	larger	than	one,	while
the	mathematical	probability	is	normalized	to	1,	namely	it	is	between	0	and	1.
We	shall	indicate	thermodynamic	probability	with	Γ.	The	macrostates	of	isolated
systems	spontaneously	evolve	towards	macrostates	of	larger	entropy	S	and	larger
Γ.	The	relationship	between	the	two	quantities	is

	 (5.79)
This	very	important	equation	in	physics	was	found	by	Boltzmann,	starting

from	the	laws	of	classical	mechanics	and	probability	theory.	It	has	been	engraved
on	the	Boltzmann	tombstone.	We	cannot	prove	the	equation	here,	but	we	can
justify	the	logarithmic	dependence.	Consider	a	system	made	of	two	parts.	The
number	of	its	realizations	Γ	is	equal	(assuming	the	two	parts	to	be	independent)
to	the	product	of	the	numbers	of	realizations	of	each	part	separately,	say	Γ	1	and
Γ	2.	Hence,	Γ	=	Γ	1	Γ	2,	and	Eq.	(5.79)	gives	us

	 (5.80)
Indeed,	the	entropy	of	a	system	is	the	sum	of	those	of	its	(independent)	parts,

the	thermodynamic	probability	is	the	product	of	the	probabilities	of	its	parts,	and
the	logarithm	of	a	product	is	equal	to	the	sum	of	the	logarithms	of	the	factors.
Logarithm	is	the	only	function	with	this	property.

The	definition	we	gave	of	the	thermodynamic	probability	of	a	macrostate
being	the	number	of	microstates	that	realize	it	presents	a	difficulty.	Consider	a
certain	microstate.	If	we	vary	the	position	or	velocity	of	a	molecule	a	little,	the
macrostate	does	not	vary.	But	coordinates	and	velocity	are	continuous	variables,
which	can	assume	an	infinite	number	of	values.	It	looks	like	the	thermodynamic
probability	is	infinite.	We	avoid	the	difficulty	as	follows.

To	define	a	microstate,	we	need	6N	quantities.	We	can	then	represent	the
microstate	with	a	point	in	a	6N-dimensional	space.	This	is	called	the	phase	space
.	We	arbitrarily	define	an	elementary	cell	as	a	portion	of	the	phase	space	of
small,	but	arbitrary,	size	and	we	define	as	being	indistinguishable	from	the
microstates	whose	representative	points	fall	within	the	same	cell.	When	we
calculate	the	thermodynamic	probability,	we	count	them	as	one.	The	arbitrary
choice	of	the	elementary	cell	does	not	have	consequences,	as	long	as	we
consider	entropy	differences,	as	we	did	in	our	study	of	thermodynamics.	Indeed,
if	we	change	the	volume	of	the	cell	by	a	factor,	the	number	of	microstates
corresponding	to	a	given	macrostate	changes	by	the	same	factor.	As	a
consequence	of	the	logarithmic	dependence,	entropy	changes	by	an	additive
constant	while	entropy	differences	remain	unaltered.	In	other	words,	the
consequence	of	the	arbitrary	size	of	the	elementary	cell	is	that	entropy	is	defined



5.1.

up	to	an	additive	constant.	We	will	only	mention	here	that	quantum	mechanics
gives	a	precise	prescription	for	the	size	of	the	elementary	cell	and,	consequently,
of	the	entropy	constant.

We	have	seen	how	thermodynamics	defines	the	infinitesimal	entropy
variation	as	dS	=	δQ/T,	where	δQ	is	the	heat	reversibly	received	by	the	system
and	T	is	the	temperature	of	the	source	(which	is	also	that	of	the	system,	because
the	process	is	reversible).	Let	us	now	look	at	the	physical	reason	for	that.	When
we	give	heat	to	a	system,	we	increase	the	thermal	motion	of	its	molecules.
Namely,	we	increase	the	disorder	or	the	number	of	microstates	that	realize	the
new	macrostate.	It	is	also	clear	that,	for	the	same	received	heat,	the	disorder
increase	is	inversely	proportional	to	the	thermal	energy	that	already	exists,	i.e.,
the	absolute	temperature.	This	explains	the	thermodynamic	definition.

We	conclude	by	calculating	the	entropy	variation	in	the	free	expansion	of	an
ideal	gas	by	the	factor	of	2	that	we	considered	above,	using	the	Boltzmann
equation	Eq.	(5.79).	We	have	already	found	that	the	ratio	between	the	numbers
of	microstates	corresponding	to	the	final	and	initial	macrostates	is	2	N	,	if	N	is	the
number	of	molecules.	The	entropy	variation	is	then

	 (5.81)
where,	in	the	last	term,	n	is	the	number	of	moles.	We	have	found	the	relation
known	from	thermodynamics.

In	Sect.	4.5,	we	found	the	expression	of	the	entropy	difference	between	two
states	f	and	i	of	a	van	der	Waals	gas	,	namely

	 (5.82)
Then,	we	observed	that	this	expression	differs	from	the	one	valid	for	an	ideal

gas	only	for	the	volumes	being	diminished	by	the	covolume	rather	than	the	total
volumes.	We	observed	that,	in	both	cases,	we	deal	with	the	volume	available	to
the	molecules.	Finally,	we	noticed	that	the	term	a/V	2,	representing	the	molecular
interactions	in	the	van	der	Waals	equation,	does	not	appear.	We	can	now
understand	the	reason	for	this.	The	thermodynamic	probability	of	a	macrostate,
at	a	given	temperature,	depends	only	on	the	volume	available	to	the	molecules,
not	on	the	presence	or	not	of	interactions	amongst	them.

Problems

Evaluate	the	number	of	molecules	in	a	glass	of	water.



5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

	
What	is	the	mass	of	a	mole	of	electrons?

	
How	can	one	find	the	molecule	number	density	n	p	of	a	substance	of	known
density	ρ	and	molecular	mass	µ?

	
How	many	molecules	are	there	in	a	cubic	meter	of	air	at	0	°C	at	one
atmosphere	pressure	(take	it	in	round	numbers	100	kPa)?

	
A	gas	flow	is	made	of	equal	molecules	of	mass	m,	with	a	numeric	density
N/V,	that	move	at	the	same	velocity	v.	The	flow	hits	a	wall	of	unit	area	at
the	angle	θ	with	the	normal.	Evaluate:	(a)	the	number	of	collisions	per	unit
time;	(b)	the	pressure	exerted	by	the	gas.

	
The	average	kinetic	energy	of	the	molecules	of	an	ideal	monoatomic	gas	is
〈k	B	T〉	=	6	×	10−21	J,	the	pressure	is	100	kPa.	Find:	(a)	temperature.	(b)	the
molecules’	numerical	density.

	
Consider	the	probability	density	functions	in	Fig.	5.15	and	determine,	in
both	cases,	the	value	of	A	to	have	f(x)	normalized	and	the	root	mean	square
value	of	x.

Fig.	5.15 Two	probability	density	functions



5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

	
Calculate	the	most	probable	and	the	root	mean	square	velocities	of	the	N2
molecules	at	20	°C.

	
Calculate	the	root	mean	square	rotation	angular	velocity	of	N2	at	20°C.	The
distance	between	nuclei	is	a	=	0.37	nm.	Use	classical	physics.

	
An	ideal	gas	is	in	a	conservative	and	central	force	field.	The	potential
energy	of	a	molecule	at	the	distance	r	from	the	center	is	U	p	(r).	Write	the
expression	of	the	number	dN	of	molecules	per	unit	volume	between	r	and
r	+	dr	as	a	function	of	r,	knowing	that	the	numerical	density	at	r	0	is	n	0.

	
In	a	gas	in	thermal	equilibrium,	what	are	the	fractions	of	the	molecules
with	kinetic	energy	larger	than	(a)	the	mean,	and	(b)	three	times	the	mean?

	
Consider	the	experiment	by	Perrin	on	the	height	distribution	of	equal
spherical	particles	suspended	in	water.	The	density	of	his	particles	was	ρ	p
	=	1250	kg	m−3	and	their	radius	r	=	0.21	µm.	The	temperature	of	the
suspension	was	T	=	293	K.	Looking	through	the	microscope,	he	counted
the	number	of	particles	per	unit	volume	at	the	heights	z	1	and	z	2	separated
by	z	2	–	z	1	=	30	µm.	He	found	that,	at	the	higher	level,	the	number	was
smaller	than	at	the	lower	by	a	factor	of	2.1.	Find	NA.

	
Considering	an	isothermal	atmosphere	at	T	=	20	°C	with	a	sea-level
pressure	p	0,	find	the	pressure	at	altitudes:	(a)	h	=	5000	m	(about	the	top	of
Mont	Blanc),	(b)	h	=	9000	m	(about	Mount	Everest);	(c)	in	a	mine	2000	m
deep.	Take	the	molar	mass	of	air	equal	to	29.



5.14.

5.15.

5.16.

5.17.

5.18.

1

	
A	container	divided	into	two	equal	parts	contains	a	gas	of	6	molecules.
Find:	(a)	the	thermodynamic	Γ	and	mathematic	P	probabilities	of	the
states	with	the	following	numbers	of	molecules	in	the	two	halves:	(0,	6);
(1,	5);	(2,	4),	(3,	3);	(b)	the	probabilities	of	finding	the	system	in	the	states
(2,	4),	(3,	3),	(4,	2).

	
A	thermodynamic	system	passes	from	one	state	to	another,	having	twice
the	thermodynamic	probability.	What	is	the	entropy	variation?

	
Calculate	the	entropy	variation	ΔS	and	the	ratio	of	the	thermodynamic
probabilities	Γ	v	/Γ	l	for	the	evaporation	of	a	liter	of	water	at	T	=	373	K.
The	vaporization	heat	is	Q	lv		=	2256	kJ/kg.

	
A	milligram	of	water	at	T	=	293	K	passes	into	a	new	thermodynamic	state
with	a	thermodynamic	probability	1000	times	larger.	(a)	Calculate	the
entropy	variation	ΔS.	(b)	Can	we	detect	the	variation	measuring	ΔT?

	
What	is	the	behavior	of	the	thermodynamic	probability	of	a	system
making	an	adiabatic	process?

	

Footnotes
R.C.	Miller	and	P.	Kausch,	Phys.	Rev.	99	(1955)	p.	1314.
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Up	to	now,	we	have	mainly	studied	the	properties	of	thermodynamic	systems	in
equilibrium.	In	this	chapter,	we	shall	consider	important	examples	of	processes
that,	starting	from	non-equilibrium,	lead	to	the	establishment	of	equilibrium
conditions.	These	are	called	kinetic	processes	and	are	spontaneous	and,
obviously,	irreversible.

Suppose,	for	example,	we	have	a	pot	of	water	in	thermal	equilibrium	with
the	environment.	We	insert	an	electric	immersion	heater	in	the	middle	of	the	pot,
and	after	a	few	moments,	we	take	it	back	out.	The	temperature	in	the	central
zone	is	now	higher	than	in	the	peripheral	parts.	The	system	is	no	longer	in
thermal	equilibrium.	It	will	evolve	towards	a	new	equilibrium	state
spontaneously.	Thermal	energy,	or	heat,	will	diffuse	from	the	hotter	to	the	cooler
parts	until	the	temperature	is	uniform	everywhere.	This	is	a	thermal	energy
diffusion	process	(in	absence	of	convective	motions).

As	another	example,	let	us	drop	a	sugar	cube	into	a	hot	cup	of	tea.	Just	after
the	sugar	has	completely	melted,	the	sugar	concentration	in	the	tea	is	much
higher	in	the	region	of	tea	where	the	cube	was	dropped,	decreasing	with
increasing	distance.	The	system	is	not	in	equilibrium.	The	sugar	diffuses	all
through	the	liquid,	until	its	concentration	is	uniform,	i.e.,	equal	throughout	the
teapot.	Similarly,	if	we	introduce	a	quantity	of	gas	into	one	portion	of	a	room,	for
example,	by	spraying	a	perfume,	with	time,	its	molecules	will	diffuse	throughout
all	the	air	in	the	room.
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These	are	simple	examples	of	two	transport	phenomena,	the	propagation	by
conduction	of	heat,	or	of	thermal	energy,	and	the	diffusion.	In	the	first	case,	the
transported	physical	quantity	is	kinetic	energy	of	molecules,	in	the	second,	the
molecules	themselves	(of	sugar	or	perfume).	We	shall	also	consider	a	third	case,
the	transport	of	a	vector	quantity,	the	linear	momentum	(or,	in	an	equivalent
manner,	velocity).	Let	us	consider	an	example.

Suppose	we	can	work	on	a	canal	in	which	water	flows	with	velocity	constant
in	time	and	uniform,	namely	equal	at	all	the	points	of	the	fluid.	The	speed	is	not
high,	a	few	centimeters	per	second.	We	place	a	wood	tablet	on	the	surface	of	the
liquid	and	give	it	a	different	velocity,	say	higher,	from	that	of	the	liquid.	After	a
while,	we	raise	the	tablet.	In	a	zone	near	where	the	tablet	was,	water	has	a
velocity,	and	a	linear	momentum,	different	from	that	of	the	rest	of	the	liquid.	In
the	previous	example,	we	had	injected	thermal	energy	or	an	extraneous	gas;	now
we	inject	linear	momentum.	Also	in	this	case,	the	injected	quantity,	which	is	the
excess	of	linear	momentum,	gradually	diffuses	throughout	the	system	until	the
linear	momentum	is	uniform.	The	phenomenon,	as	we	shall	see,	is	directly
connected	to	viscosity.

The	three	diffusion	phenomena	that	we	have	just	exemplified	will	be	treated
in	the	first	three	sections.	All	of	them	are	due	to	the	chaotic	motion	of	the
molecules	and	their	collisions.	In	Sect.	6.4,	we	shall	define	two	important
correlated	quantities	needed	for	a	description	of	collisions,	the	cross-section,
which	measures	the	probability	of	a	collision,	and	the	mean	free	path,	the	mean
distance	crossed	by	a	molecule	between	two	collisions.	Having	these	concepts,
we	shall	come	back,	in	Sect.	6.5,	to	a	further	discussion	of	the	transport
phenomena	and	see	their	similarity	when	considered	at	the	molecular	level.

6.1	 Heat	Conduction
Consider	a	body	isolated	from	heat	sources,	with	temperature	different	from
point	to	point.	The	system	spontaneously	evolves	towards	a	state	of	uniform
temperature.	Heat	flows,	or	is	transferred,	from	the	hotter	to	the	colder	regions
until	temperature	is	uniform,	independent	of	position.	If	two	(or	more)	regions	of
the	body	are	in	contact	with	heat	sources	at	different	temperatures,	heat	flows
from	the	higher	temperature	to	the	lower	temperature	source.	The	processes	are
different,	but	the	underlying	physics	is	the	same.	In	both	cases,	we	have	a
thermal	energy	transfer	,	which	is	also	called	a	heat	transfer	.

Thermal	energy	can	be	transferred	in	three	different	ways:	by	conduction	,	by
convection	and	by	radiation

In	a	solid,	heat	transfer	is	(mainly)	by	conduction.	If	we	put	one	end	of	an



iron	rod	into	a	flame	and	hold	the	other	in	our	hand,	after	a	while,	we	feel	it
burning.	If	we	then	move	the	bar	to	a	table,	one	end	will	still	be	hotter	than	the
other.	But	shortly	after,	the	temperature	will	be	uniform.	The	thermal	heat	has
been	transferred,	in	both	cases,	from	the	higher	to	the	lower	temperature	regions
by	conduction.	The	underlying	physics	phenomenon	is	the	diffusion	of	the
internal	kinetic	energy.

If	the	system	is	a	fluid,	heat	is	transferred	by	conduction	and	by	convection.
Convection	takes	place	because	regions	of	different	temperature	also	have
different	density,	and	are	not	in	mechanical	equilibrium	under	their	weights.	As	a
consequence,	motions	arise	inside	the	system,	in	which	hotter	and	colder	liquid
masses	mix	with	one	another.	The	thermal	energy	travels	together	with	the	fluid
masses	in	their	macroscopic	motions,	as	opposed	to	molecular	motions.	This
process	is	called	convection,	from	the	Latin	words	for	“taking	with”.	The
importance	of	the	convective	motion	depends	on	the	direction	of	temperature
gradient	relative	to	the	vertical.	Consider,	for	example,	a	pot	of	water	on	a	stove.
The	water	elements	on	the	bottom	of	the	pot	have	the	highest	temperature	and
the	smallest	density.	Consequently,	they	rise	toward	the	surface	while	colder
elements	descend.	The	mixing	action	is	very	efficient.	Contrastingly,	if	the	heat
source	is	above	the	container,	those	portions	of	liquid	warming	first,	and
decreasing	in	density,	are	already	above	the	colder	ones	and	do	not	move	much.

Thermal	energy	transfer	also	takes	place	in	a	vacuum.	Consider	a	box	in
which	we	have	created	a	vacuum	containing	two	metallic	plates	facing	one
another	at	different	temperatures.	As	a	matter	of	fact,	the	space	between	the
plates	is	empty	of	matter	but	does	contain	something.	It	contains	the
electromagnetic	radiation	emitted	by	the	hot	plate	and	(partially)	absorbed	by	the
cold	one.	The	process	is	the	radiation	transfer.

Having	mentioned,	for	the	sake	of	completeness,	the	three	thermal	energy
transfer	mechanisms,	we	shall	now	study	only	the	first	one,	conduction.	As	we
have	already	mentioned,	thermal	conduction	means	the	diffusion	of	the	internal
kinetic	energy.

Heat	conduction	phenomena,	in	general,	take	place	in	three-dimensional
media,	in	which	the	temperature	varies	from	point	to	point	and	as	a	function	of
time.	We	shall	limit	our	discussion	to	the	simplest	situation,	in	which
temperature	depends,	beyond	time,	on	one	coordinate	only.	Consider	a	plate	of
surface	large	enough	for	any	edge	effect	to	be	negligible.	Suppose	the
temperatures	on	each	side	of	the	plate	to	be	uniform.	Let	them	be	T	1	and	T	2,
with	T	1	>	T	2.	In	general,	the	temperatures	may	vary	over	time.

We	take	a	reference	frame	with	the	origin	and	the	y	and	z	axes	on	the	face	at



higher	temperature,	and	the	x-axis	toward	the	second	face	as	in	Fig.	6.1.	The
temperature	at	the	points	of	the	plate	is	a	function	of	x	and	time,	say	T(x,	t).
Consider	a	surface	element	dS	at	a	generic	point	of	the	system,	taken	normal	to
the	direction	of	the	heat	flow,	which	is	the	x-axis	in	our	case.

Fig.	6.1 Heat	transfer	by	conduction	in	one	dimension

Let	dQ	be	the	heat	flowing	through	dS	in	the	elementary	time	interval	dt.	It	is
evident	that	dQ	is	proportional	to	both	dS	and	dt.	The	proportionality	coefficient
depends	on	the	material.	In	1807	(published	in	1822),	Jean	Baptiste	Joseph
Fourier	(France,	1768–1830)	theoretically	found	the	following	law	that	was
subsequently	experimentally	verified.	It	is	called	Fourier’s	law

	 (6.1)
where	κ	is	the	thermal	conductivity	of	the	substance.	Thermal	conductivities
of	different	substances	range	over	several	orders	of	magnitude	with	continuity.
At	the	two	extremes,	as	already	mentioned	in	Sect.	2.4,	we	have	the	good
thermal	conductors	and	the	good	thermal	insulators	.	We	shall	give	some	values
at	the	end	of	the	section.	We	see	that	dQ	is	also	proportional	to	the	space
derivative,	namely	the	gradient,	of	temperature.	The	more	quickly	the
temperature	varies	along	the	x-axis,	the	larger	the	heat	transmission.	The
negative	sign	means	that	the	heat	flow	is	in	the	direction	of	decreasing
temperature.

The	heat	crossing	a	given	surface	taken	perpendicularly	to	the	flow	in	the
unit	time	is	called	heat	flux	or	thermal	flux	.	The	heat	flux	density	,	or	thermal



flux	density	,	is	the	flux	per	unit	area.	We	shall	call	it	Φ	Q	.	For	Eq.	(6.1),	it	is
obviously

	 (6.2)
Heat	conductivity	is	then	the	proportionality	constant	between	heat	flux

density	and	temperature	gradient.	The	physical	dimensions	of	heat	flux	density
are

	 (6.3)
and	those	of	thermal	conductivity	are

	 (6.4)
Consider	a	body	initially	at	non-uniform	temperature	in	absence	of	external

heat	sources.	The	temperature	tends	to	become	uniform	in	any	case,	but	the	time
needed	for	that	depends	on	thermal	conductivity.	It	will	be	shorter	the	higher	the
conductivity.	In	addition,	the	temperature	variation	for	a	given	received	heat	is
inversely	proportional	to	the	specific	heat	and	the	density.	Such	is	also	the
temperature	leveling	speed.	Let	us	see	this	in	formulae.

Let	us	take	two	surfaces	dS	1	and	dS	2	of	the	same	area	dS	perpendicular	to
the	x-axis	at	the	same	y	and	z.	One	of	them	is	at	x,	the	other	at	x	+	dx,	as	in
Fig.	6.2.	Consider	the	element	between	the	two	surfaces	(in	evidence	in	the
figure).	It	receives	and	gives	off	heat	through	the	two	faces.	The	heat	through	the
first	face	(in	the	positive	x	direction)	in	the	time	interval	dt	is	

,	where	we	have	indicated	with	 	the	partial
derivative	of	the	temperature	with	respect	to	x	at	the	position	x.	Similarly,	the
heat	through	the	second	face	(always	in	the	positive	x	direction)	in	dt	is	

.	The	first	heat	enters,	the	second	exits;	hence,	the	heat
absorbed	by	the	element	is



Fig.	6.2 Heat	transfer	through	an	infinitesimal	element

Upon	absorption	of	dQ,	the	temperature	of	the	elements	increases	by,	say,
dT.	If	ρ	is	the	density	and	c	p	the	specific	heat	(we	operate	at	constant	pressure),
we	write

Putting	together	the	two	equations	just	found,	we	get

which,	collecting	the	constants	together,	can	be	written	as

	 (6.5)
where	the	constant	χ	is

	 (6.6)
The	differential	equation	Eq.	(6.5)	tells	us	that	the	rate	of	change	in	time	of

temperature	is	proportional	to	its	second	spatial	derivative,	namely	the	rate	of
change	with	position	of	the	temperature	gradient.	The	proportionality	constant	χ
tells	how	quick	the	process	of	temperature	equalization	is.	This	is	called	thermal
diffusivity	and	is	equal	(we	had	anticipated	a	proportionality)	to	the	thermal
conductivity	divided	by	the	product	of	specific	heat	and	density.	The



measurement	units	are

	 (6.7)
We	shall	come	back	to	its	physical	meaning	in	Sect.	6.3.	We	simply

anticipate	here	that	the	physical	mechanism	of	heat	transmission	is	the
following.	If	in	a	zone	of	the	body,	the	temperature	is	higher	than	in	the	adjacent
zones,	the	molecules	in	that	zone	have	larger	on	average	kinetic	energies	than
those	in	the	other.	Part	of	this	kinetic	energy	in	excess	is	transferred	to	the
“colder”	molecules	through	collisions.	The	excess	kinetic	energy	diffuses	in	this
way	throughout	the	body.	Equation	(6.5)	quantitatively	describes	how	the
molecular	mean	kinetic	energy	diffusion	mechanism	takes	place.

Table	6.1	reports	the	values	of	thermal	conductivity	at	ambient	temperature
for	several	substances.	Metals	have	typically	high	conductivity.	(349	Wm−1K−1

for	Cu,	209	Wm−1K−1	for	Al,	58	Wm−1K−1	for	Fe).	Rocks	have	generally	low
conductivity,	typically	a	few	Wm−1K−1.	A	good	thermal	insulator	like
polyurethane	foam	has	a	thermal	conductivity	of	0.026	Wm−1K−1,	which	is	four
orders	of	magnitude	smaller	than	aluminum.

Table	6.1 Thermal	conductivity	of	different	materials	at	room	temperature

Material	κ	(Wm−1K−1) Material	κ	(Wm−1K−1) Material	κ	(Wm−1K−1)
Metals Various Insulators
Aluminum 209 Slate 1.98 Asbestos 0.2
Iron 58 Ceramic 1.1 Rockwool 0.04
Brass 99 Granite 3.14 Perlite 0.04
Copper 349 Plasters 0.8-1.5 Polystyrene 0.035
Zinc 110 Bricks 0.8 Polyurethane 0.026
	 	 Terracotta 0.9 	 	
	 	 Dry	ground 0.8 	 	
	 	 Wet	ground 2.3 	 	

The	physical	reason	for	the	high	thermal	conductivity	of	metals	is	that	heat
in	them	is	transmitted	through	the	thermal	motion	of	electrons,	rather	than	of
molecules,	as	in	the	largest	fraction	of	other	materials.	As	we	have	already
mentioned,	metals	are	aggregates	of	microcrystals	made	of	ions	of	the	element.
In	a	microcrystal,	each	atom	has	lost	one	or	two	electrons,	depending	on	the
metal.	These	electrons,	called	conduction	electrons	,	are	free	to	move,	like	a	gas,
inside	the	crystal.	They	are	responsible	for	the	heat	conduction.	Their	kinetic
energy	is	proportional	to	the	absolute	temperature.	At	a	given	temperature,	the
mean	kinetic	energy	of	the	electron	gas	is	equal	to	that	of	the	molecules	of	a



“normal”	monoatomic	gas.	Consequently,	the	ratio	between	the	root	mean	square
velocities	in	the	two	cases	is	equal	to	the	reciprocal	of	the	square	root	of	the	ratio
of	the	masses.	The	molecular	masses	are	typically	four	orders	of	magnitude
larger	than	the	electron	mass.	As	a	consequence,	the	root	mean	square	speed	of
electrons	is	two	orders	of	magnitude	larger	than	that	of	molecules	at	the	same
temperature.	This	is	why	the	heat	transmission	is	much	faster.

Consider	again	the	plate	in	Fig.	6.1	in	the	particular	case	in	which	the
temperatures	of	the	two	sides	T	1	and	T	2(T	1	>	T	2)	are	constant	in	time,	namely
in	stationary	conditions	.	This	is	the	case,	for	example,	for	a	wall	in	a	house.	In
winter,	the	temperature	outside	is	lower	and	heat	flows	from	inside	to	outside.
Equation	(6.5)	simplifies	it	as

	 (6.8)

Integrating	it	twice,	we	find	the	solution	 ,	where	A	and	B	are	the
integration	constants.	We	determine	the	constants	by	imposing	the	boundary
conditions.	At	x	=	0,	it	must	be	T	=	T	1,	and	at	x	=	h,	it	must	be	T	=	T	2.	We
immediately	find	 	and	B	=	T	1,	and	we	get

	 (6.9)
The	solution	says	that,	under	stationary	conditions,	the	temperature	decreases

linearly	from	one	face	to	the	other.
The	heat	transmitted	per	unit	time	through	a	surface	area	S	is	obtained	from

Eq.	(6.1)	by	integration.	We	get

	 (6.10)
The	heat	transmitted	through	the	wall	per	second	is	proportional	to	the

temperature	difference	between	its	two	sides,	directly	to	the	surface	and
inversely	to	the	thickness	of	the	wall.	The	proportionality	constant	is	the
conductivity.

6.2	 Diffusion
Consider	now	a	solution,	for	example,	sugar	(solute)	in	water	(solvent).	If	the
concentration	is	not	uniform,	molecules	of	solute	tend,	on	average,	to	move,	in
their	disordered	thermal	motion,	from	sites	of	higher	to	those	of	lower
concentration.	Equilibrium	is	reached	when	concentration	is	uniform.	The
phenomenon	is	called	(once	more)	diffusion	.	As	a	matter	of	fact,	the
phenomenon	is	similar	to	the	free	expansion	of	the	gas	we	discussed	in	Chap.	5.



It	is	the	transition	between	macrostates	of	smaller	to	higher	thermodynamic
probabilities.	The	difference	is	that	diffusion	is	a	much	slower	process.

Also	now,	we	consider,	for	simplicity,	a	one-dimensional	situation.	We
suppose	that	the	concentration,	which	we	call	c,	depends	on	time	and	on	one
coordinate	only,	say	x.	Let	Φ	c	be	the	solute	mass	passing	in	one	second	through
a	one	meter	square	surface	normal	to	the	x-axis,	called	the	mass	flux	density.	The
flux	direction	is	from	higher	to	lower	concentration,	namely	the	direction
opposite	to	the	derivative	of	concentration	 ,	which	is	the	concentration
gradient.	Clearly,	there	is	no	flow	for	uniform	concentration,	namely	 .

The	relation	between	concentration	flux	density	and	gradient	is	the	same	as
in	the	case	of	thermal	energy,	Eq.	(6.2),	namely

	 (6.11)
where	D	is	the	diffusion	coefficient	,	which	depends	on	both	solvent	and
solute	and	on	temperature.	The	flowing	solute	quantity	can	be	expressed	as	a
mass,	as	a	number	of	molecules	or	as	a	number	of	moles.	The	choices	are
obviously	equivalent,	but	the	physical	dimensions	of	the	diffusion	coefficient
depend	on	them.	If	we	measure	the	concentration	in	moles	per	cubic	meter,	the
flux	density	will	be	in	mol	m−2s−1	and	the	dimensions	of	the	diffusion	coefficient
D	are	m2s−1.

What	we	have	stated	is	also	valid	in	the	case	of	the	diffusion	of	a	gas	in
another	gas	and	also	of	a	gas	in	itself	(different	regions	having	different
densities),	which	is	called	self-diffusion	.

The	differential	equation	describing	the	evolution	of	concentration	in	the
solution	is	completely	analogous	to	the	case	of	thermal	energy	diffusion	(with
concentration	in	place	of	temperature)	that	we	found	in	Eq.	(6.5).	What	we	said
there	is	valid	here,	with	the	obvious	changes,	and	we	shall	not	discuss	it	any
further.	We	observe,	however,	that,	as	in	the	case	of	thermal	energy	diffusion,	the
equation	is	valid	only	if	the	fluid	is	in	mechanical	equilibrium	and	the
equalization	of	concentration	is	due	to	the	thermal	disordered	motion	of	the
molecules	only.	In	other	words,	there	are	no	convective	motions.

Consider,	for	example,	two	liquids,	water	and	alcohol,	the	first	with	a	larger
density	than	the	second.	We	put	alcohol	in	a	container	and	then	we	slowly	inject
water	with	a	small	tube	at	the	bottom	of	the	container.	If	we	are	careful	enough,
we	can	produce	a	layer	of	water	under	the	alcohol.	The	convective	motion	will
be	practically	absent	and	water	molecules	will	mix	with	alcohol	molecules
through	their	collisions,	namely	by	diffusion.	If	we	proceed	in	the	opposite	way,



filling	the	container	with	water	and	then	injecting	the	(lighter)	alcohol	at	the
bottom,	the	liquids	will	mix	by	convection.

The	reason	for	the	similarity	of	the	heat	conduction	and	matter	diffusion	is
very	clear	when	looked	at	from	the	microscopic	point	of	view.	In	the	first	case,
an	excess	of	average	kinetic	energy	of	molecules,	or	of	conduction	electrons,
diffuses	to	reach	the	equalization	of	kinetic	energy.	In	the	second	case,	the
excess	of	solute	molecular	density	in	a	region	diffuses	to	reach	the	equalization
of	molecular	density.	Consequently,	the	differential	equations	ruling	the	two
processes	Eqs.	(6.2)	and	(6.11)	are	equal.

There	is,	however,	a	small	difference.	While	in	Eq.	(6.11),	the	flux	and	the
gradient	are	both	of	the	concentration,	namely	the	same	physical	quantity,	in
Eq.	(6.2),	flux	and	gradient	are	of	two	different	quantities.	However,	we	can
easily	have	the	same	quantity	on	both	sides	in	the	latter	case	as	well.	It	is	just	a
matter	of	dividing	both	sides	by	 .	The	resulting	quantity	on	the	left-hand	side,

,	is	the	flux	density	of	mean	molecule	kinetic	energy,	which	we	can	call
Φ	T	.	We	have

	 (6.12)
So,	we	understand	why	thermal	diffusivity	and	diffusion	coefficient	have	the

same	physical	dimensions	(m2s−1).	The	values	of	the	two	quantities	are	also
similar	for	gases.	For	example,	the	thermal	diffusivity	of	air	at	0	°C	is
χ	=	1.9	⨉	10−5	m2s−1,	while	the	diffusion	coefficient	of	water	vapor	in	air	is
D	=	2.3	⨉	10−5	m2s−1.

The	diffusion	coefficients	in	air	of	a	few	gases	at	different	temperatures	are
reported	in	Table	6.2.

Table	6.2 Diffusion	coefficients	in	air

Substance T	(°C) D	(10−5	m2s−1)
Alcohol	(vapor) 40 1.37
CO2 0 1.39

CS2 20 1.02

Ether	(vapor) 20 0.89
Hydrogen 0 6.34
Oxygen 0 1.78
Water	(vapor) 8 2.39

In	liquids,	diffusion	is	much	slower	than	in	gases.	For	example,	the	diffusion



coefficient	of	sugar	in	water	is	0.3	⨉	10−7	m2s−1,	while	that	of	common	salt
(NaCl)	in	water	is	1.1	⨉	10−7	m2s−1.	These	are	two	orders	of	magnitude	smaller
than	for	gases.

6.3	 Viscosity
In	Chap.	1,	we	studied	the	viscosity	phenomena	from	the	macroscopic	point	of
view.	There,	we	considered	a	liquid	(or	a	gas)	contained	between	two	solid	plane
horizontal	sheets	at	a	distance	h.	We	considered	the	higher	sheet	moving	at
constant	speed	υ	0,	and	the	lower	one	at	rest.	The	liquid	layers	in	contact	with
each	sheet	remain	adhered	to	them	and	have	their	velocities.	Inside	the	liquid,
the	velocity	decreases	linearly	with	increasing	depth	from	υ	0	to	0	at	the	bottom,
as	shown	in	Fig.	6.3,	which	is	equal	to	Fig.	1.11.

Fig.	6.3 Laminar	flow	between	two	surfaces

We	have	chosen	the	x-axis	vertical	downward	with	origin	on	the	upper
surface.	Forces	due	to	viscosity	act	in	the	direction	opposite	to	the	relative
motion,	between	fluid	layers.	The	shear	stress	,	namely	the	force	per	unit
surface,	is	given	by	Eq.	(1.23),	which	we	reproduce	here	for	convenience:

	 (6.13)
We	shall	now	see	the	physical	meaning	of	viscosity	.	The	situation	we	are

considering	is	particularly	simple	because	the	velocity	vector	has	the	same
direction	everywhere.	Only	its	absolute	value	varies	and	does	so	as	a	function	of
one	coordinate	only,	υ	=	υ(x).	Indeed,	as	we	mentioned,	the	system	is	a	fluid
layer	between	two	planes,	ideally	of	infinite	extension,	at	the	distance	h	between
them.

The	relevant	physical	quantities	of	the	problem	are	velocity	and	linear
momentum	of	the	fluid	elements.	As	we	are	dealing	with	a	continuous	system,
we	must	talk	of	linear	momentum	density	,	which	is	the	linear	momentum	of	an



elementary	volume	divided	by	the	volume.	Let	us	consider	a	fluid	element	of
volume	dV	with	mass	 .	If	v	is	its	velocity,	its	momentum	is	 .
The	momentum	density	is	then

In	our	simple	case,	the	momentum	density	varies	only	as	a	function	of	the
height	and	does	so	linearly	in	absolute	value	between	ρ	υ	0	and	0,	while	the
direction	is	a	constant.	The	situation	is	then	completely	analogous	to	the	one
considered	in	Sect.	6.2,	where	we	had	a	layer	of	matter	between	two	planes	at
different	temperatures.	In	both	cases,	the	regime	is	stationary.	In	that	case,	we
had	a	thermal	energy	flow	from	the	hot	to	the	cold	plate	through	all	the	sections
of	the	layer.	Similarly,	in	this	case,	we	have	a	flow	of	momentum	density	from	the
face	at	higher	speed	to	the	one	at	lower	speed.

We	now	want	to	find	an	expression	of	the	linear	momentum	flux	,	which	we
indicate	with	Φ	p	,	and	which	is,	by	definition,	the	linear	momentum	going
through	the	normal	surface	unit	in	the	unit	time.	In	our	problem,	momentum
flow	is	in	the	direction	of	the	x-axis	in	Fig.	6.3.	Let	us	then	take	the	surface
element	dS	of	Eq.	(6.13)	perpendicular	to	the	x-axis.	The	linear	momentum
going	through	dS	in	a	second	is	Φ	p	dS.	This	is	the	decrease	of	momentum	per
unit	time	above	dS	and	its	increase	below	dS.	But	the	rates	of	change	of
momentum	are	equal	to	the	forces.	The	forces	are	the	shear	stresses	with	which
the	fluid	layers	act	on	one	another.	In	conclusion,	the	momentum	flux	is	equal	to
the	share	stress

	 (6.14)
Notice	that	the	regime	of	our	fluid	is	laminar.	If	there	were	vortices,	their

effect	would	have	been	to	quickly	mix	the	fluid	elements,	equalizing	the
momentum	density.	The	latter	mechanism	is	similar	to	the	heat	and	mass
transport	by	convection.	We	shall	limit	our	discussion	to	the	transport,	of
momentum	in	this	case,	through	molecular	collisions	.

Having	found	Eq.	(6.14),	we	can	write	Eq.	(6.13),	which	we	already
encountered	in	hydrodynamics,	as

	 (6.15)
where	the	minus	sign	means,	as	usual,	that	the	direction	of	the	flow	is
opposite	to	that	of	the	velocity	gradient.	We	can	say	that	the	dynamic	viscosity	η
measures	the	rapidity	of	the	transmission	of	linear	momentum	from	one	place	to
the	other.



Equation	(6.15)	is,	in	fact,	very	similar	to	Eqs.	(6.11)	and	(6.12).	It	is	similar
but	not	identical,	because	in	the	latter	equations,	we	have,	on	the	right-hand	side,
the	rate	of	change	and,	on	the	left-hand	side,	the	flux	density	of	the	same
physical	quantity.	We	would	like	to	have,	on	the	left-hand	side	of	Eq.	(6.13),	the
velocity	flux	density	Φ	υ	.	Velocity	is	momentum	divided	by	the	mass.	As	we	are
dealing	with	the	unit	volume,	we	should	divide	by	the	density	ρ.	The	velocity
flux	density	is	Φ	υ		=	Φ	p	/ρ.	It	is	now	convenient	using	the	kinematic	viscosity	to
find

	 (6.16)
and	Eq.	(6.15)	becomes

	 (6.17)
Equation	(6.17)	is	now	identical	to	Eqs.	(6.11)	and	(6.12).	The

proportionality	coefficient	between	flux	density	and	gradient	is	the	kinematic
viscosity	ν;	and	it	determines	the	speed	at	which	the	velocity	field,	left	alone,
becomes	uniform.	The	physical	dimensions	of	the	kinematic	viscosity	are

	 (6.18)
which	are	the	same	as	those	of	the	diffusion	coefficient	D	and	of	the	thermal
diffusivity	χ.	The	values	of	the	kinematic	viscosity	are	also	similar	to	those	of	D
and	χ.	Let	us	take	back	the	example	of	air	we	have	seen	in	the	preceding	section
(thermal	diffusion	coefficient	at	0	°C	and	normal	pressure	χ	=	1.9	⨉	10−5	m2s−1;
diffusion	coefficient	of	water	vapor	in	air	is	D	=	2.3	⨉	10−5	m2s−1).	The
kinematic	viscosity	of	air	is	ν	=	1.5	⨉	10−5	m2s−1.	As	one	sees,	the	values	are
very	similar.

In	conclusion,	a	system	in	which	temperature,	concentration	or	velocity	are
not	uniform	is	not	in	a	thermodynamic	equilibrium	state.	The	system,	left	alone,
will	spontaneously	evolve	towards	equilibrium.	The	non-uniform	quantity	will
tend	to	become	uniform.	In	all	three	cases,	the	process	takes	place	by
redistributing	amongst	the	molecules	the	physical	quantity	of	the	game.	The
redistribution	takes	place	through	molecular	(or	conduction	electrons)	collisions.
These	are	called	molecular	transport	phenomena	.	Notice	that	even	in	an	ideal
gas,	the	molecules	collide	and	redistribution	takes	place.	The	role	of	the	weak
intermolecular	attraction	forces	present	in	the	real	and	absent	in	the	ideal	gases	is
completely	secondary.	Consequently,	even	ideal	gases	are	viscous,	as	we	have
just	seen	in	the	example	of	air.	Indeed,	the	kinematic	viscosity	of	air	is	larger
than	that	of	water,	which	is	ν	=	10−6	m2s−1.	The	opposite	is	true	for	the	dynamic
viscosities,	which	are	η	=	10−3	Pa	s	for	water	and	η	=	1.8	⨉	10−5	Pa	s	for	air.



The	difference	between	the	present	case	and	those	of	diffusion	and	thermal
conduction	is	due	to	the	fact	that	temperature	and	concentration	are	scalar
quantities,	while	velocity	and	momentum	are	vectors.	As	a	matter	of	fact,	we
obtained	the	simple	Eq.	(6.17)	considering	the	simple	geometry	in	which	the
velocity	has	the	same	direction	throughout	the	fluid.	The	equation	is	valid	only
in	this	situation,	not	in	more	general	ones.	We	can	easily	see	that	Eq.	(6.17)
cannot	work	if	v	has	different	directions	at	different	points,	considering	a	liquid
in	a	cylindrical	container	uniformly	rotating	around	the	axis	of	the	cylinder,	as	in
the	viscometer	we	considered	in	Sect.	1.6.	The	velocity,	and	momentum,	of	the
fluid	elements	increase	with	increasing	distance	from	the	axis.	That	fact
notwithstanding,	there	is	no	momentum	flux,	or,	in	other	words,	there	is	no
action	by	an	internal	friction	force.	The	rotation	of	the	liquid	does	not	take	the
system	out	of	its	thermodynamic	equilibrium.	It	might,	in	fact,	continue	forever
without	any	equalization	of	velocities.

6.4	 Mean	Free	Path
The	phenomena	we	studied	in	the	last	section	depend	on	the	interactions
between	molecules.	In	a	gas	at	STP,	the	average	distance	between	molecules	is
much	larger	than	their	diameter.	Consequently,	for	the	largest	fraction	of	time,
they	interact	only	very	weakly,	or	not	at	all	if	the	gas	is	considered	to	be	ideal.
They	do	interact	during	the	short	time	intervals	during	which	they	are	close
enough	to	collide.	In	the	aggregate	phases,	liquid	and	solid,	the	situation	is
completely	different.	Molecules	always	interact	and	it	is	impossible	to	talk	of
single	collisions.	In	this	and	the	next	section,	we	shall	further	study	some
properties	of	gases.	Two	important	quantities	are	the	collision	cross-section	and
the	mean	free	path	between	collisions.

Let	us	start	by	analyzing	what	a	collision	is.	We	chose	a	reference	frame	in
which	one	molecule	is	at	rest.	When	an	incoming	molecule	is	still	farther	than
the	molecular	action	radius,	say	a	few	nanometers,	it	moves	along	a	straight	line.
The	distance	of	this	line	from	the	center	of	the	target	is	called	the	impact
parameter	,	b,	as	shown	in	Fig.	6.5.	In	other	words,	and	from	hereon	in	any
reference	frame,	b	is	the	smallest	distance	between	the	two	colliding	molecules
that	could	be	attained	if	they	moved	without	interacting	in	straight	lines	with	the
velocities	they	had	before	the	collision.



Fig.	6.4 Impact	parameter	and	cross-section	for	rigid	spheres

Let	us	consider,	in	an	extremely	rough	approximation,	a	molecule	as	a	rigid
sphere	of	radius	r	0.	Then,	the	collision	happens	if	the	centers	of	the	two
molecules	approach	one	another	by	at	least	twice	the	radius,	namely	if	 .
Let	us	consider	a	plane	perpendicular	to	the	direction	of	the	incident	molecule
and	draw	a	circle	about	the	center	of	the	standing	one	of	radius	2r	0.	The
collision	happens	if	the	incident	molecule’s	direction	before	interacting	crosses
this	area.	This	circle	is	called	the	cross-section	,	which	we	indicate	with	σ.

This	is	not,	however,	a	correct	description	of	the	collision.	Two	molecules
also	interact	with	one	another	at	distances	between	centers	larger	than	their
diameter,	up	to	the	molecular	action	radius	r	a	(see	Sect.	4.1).	Up	to	this	distance,
the	van	der	Waals	force	changes	the	momenta	of	the	two	molecules.	This	is	also
considered	a	collision.	Let	us	consider,	as	an	example,	an	asteroid	approaching	a
planet.	When	it	is	far	away,	its	trajectory	is	almost	straight,	but	getting	close	to
the	planet,	it	will	describe	an	arc	of	hyperbola,	to	finally	move	away	in	a
direction	different	from	the	original	one.	This,	if	between	molecules,	is	also	a
collision.	We	consider	any	process	in	which	the	impact	parameter	is	small
enough	that	the	velocities	of	the	two	molecules	change	significantly	to	be	a
collision.

To	be	more	precise,	we	recall	that	we	are	dealing	with	a	statistical	process.
Thus,	we	must	think	not	of	one,	but	of	many	incident	molecules	moving	in	the
same	direction	but	at	different	impact	parameters.	Their	flux	density,	Φ,	is	their
number	crossing	the	unit	area	normal	to	their	motion	per	unit	time.	The	cross-
section	is	defined	as	the	ratio	between	the	number	of	collisions	on	the	target
molecule	per	unit	time,	R,	and	the	flux	density

	 (6.19)
In	other	words,	the	cross-section	is	the	collision	rate	on	one	molecule	per

unit	incident	flux	density	(one	particle	per	square	meter	per	second).	The	cross-
section	is	not	a	geometrical	quantity,	as	its	name	suggests,	but	rather	a	measure



of	collision	probability,	and	it	depends	on	the	complete	behavior	of	the	van	der
Waals	force,	not	only	on	r	0.	However,	the	value	of	the	cross-section	obtained
considering	the	molecules	as	rigid	spheres	gives	a	reasonable	estimate	of	the
order	of	magnitude.	It	is

	 (6.20)
which	is	four	times	the	area	of	the	section	of	a	molecule.	In	Sect.	4.1,	we
mentioned	that	the	radiuses	of	the	simpler	diatomic	molecules,	like	N2	and	O2,
are	on	the	order	of	one	tenth	of	a	nanometer,	r	0	≈	0.1	nm.	In	correspondence,
Eq.	(6.20)	gives	σ	≈	10−19	m2.	This	is	the	correct	order	of	magnitude.	For
example,	the	cross-section	in	air	of	those	molecules	is	σ	=	5	×	10−19	m2.

Collisions	between	molecules	are	completely	random	processes.	In
particular,	the	distance	between	one	collision	and	the	next	is	a	random	variable.
Its	mean	value	is	called	the	mean	free	path	(between	collisions).	We	shall
indicate	it	with	l.

Clearly,	the	larger	the	cross-section,	the	smaller	the	mean	free	path.	To	find
their	relation,	consider	a	one	meter	long	path	of	a	molecule.	Imagine	the
molecule	sweeping	a	cylinder	of	section	σ.	It	hits	all	the	molecules	in	this
cylinder.	The	volume	of	the	cylinder	is	just	σ	because	we	took	its	height	to	be
unitary.	If	n	p	is	the	number	density,	in	the	cylinder,	there	are	n	p	σ	molecules.
Our	molecule	then	hits	n	p	σ	molecules	per	meter	along	its	path,	or,	we	can	say,
one	collision	every	1/(n	p	σ)	meters.	This	is	the	mean	free	path:

	 (6.21)
In	other	words,	the	mean	free	path	is	inversely	proportional	to	the	cross-

section	and	to	the	molecule	number	density,	and	consequently	to	the	gas
pressure.	It	does	not	appear	to	depend	on	temperature,	namely	on	molecular
velocities.	This	is	true	only	if	the	cross-section	is	constant,	independent	of
velocity,	as	we	implicitly	assumed.	If	the	temperature	is	high,	the	molecular
speeds	are	large	and	the	velocity	change	in	the	collision	is	substantially	due	to
the	short	distance	repulsive	force.	If,	however,	the	temperature	is	low,	and
consequently	the	velocities	are	smaller,	the	time	during	which	two	molecules	are
nearby	is	larger.	The	collision	takes	more	time	and	molecules	at	larger	impact
parameters	can	deviate.	We	conclude	that	cross-sections	in	a	gas	should	increase
with	decreasing	temperature.	This	indeed	happens,	but	variations	are	mild.	For
example,	the	collision	cross-section	between	oxygen	molecules	vary	by	30	%
between	100	°C	and	−100	°C.



Let	us	now	estimate	the	order	of	magnitude	of	the	mean	free	path	for	the	N2
and	O2	gases	at	STP,	for	which	we	found	the	cross-section	above.	Recalling	that
a	mole	of	gas	at	STP	has	the	volume	of	22.4	L,	we	find	that	the	number	density
is	n	p		=	3	×	1025	m−3.	With	σ	≈	5	×	10−19	m2,	the	mean	free	path	is	l	≈	70	nm.

In	conclusion,	at	the	molecular	level,	there	are	three	relevant	quantities	with
the	dimension	of	a	length,	the	radius	r	0,	the	mean	distance	between	them	d,	and
the	mean	free	path.	Typical	values	at	STP	are

	 (6.22)
The	mean	square	velocity	of,	for	example,	air	molecules	is	υ	≃	500	km/s,	and

consequently	the	mean	time	between	collisions	is	 .

6.5	 Transport	Properties	in	Gases
In	Sect.	6.3,	we	saw	how	the	diffusion	coefficient,	the	thermal	diffusivity	and	the
kinematic	viscosity	have	similar	underlining	physical	processes,	the	same
dimensions	and	similar	values.	We	shall	now	exploit	the	concept	of	the	mean
free	path	to	understand	the	reasons	for	that,	to	estimate	their	values
approximately	and	to	clarify	their	dependence	on	the	gas	state.	We	shall	give
order	of	magnitude	evaluation	only,	focusing	on	the	physical	concepts	and
neglecting	details.

Let	us	start	with	diffusion	.	Consider	two	gases	in	a	container.	The	pressure
is	uniform,	but	the	composition,	namely	the	ratio	between	the	densities	of	the
gases,	depends	on	position.	For	simplicity,	we	assume	that	the	dependence	is	on
one	coordinate	only.	Let	this	be	x.	Let	the	two	number	densities	be	n	p1(x)	and	n
p2(x).	The	state	is	not	of	equilibrium.	The	densities	tend	to	become	uniform
moving,	on	average,	in	the	x	direction.	This	is	a	diffusion	process.

Consider	the	molecules	of	one	gas,	the	first	one,	for	example.	Suppose	that
its	density	decreases	with	increasing	x,	say	from	left	to	right.	Consider	the	plane
perpendicular	to	the	x-axis	at	the	coordinate	x.	An	average	number	of	molecules
crosses	the	unit	area	surface	of	this	plane	in	a	second	from	left	to	right	and
another	number	from	right	to	left.	The	difference	between	these	numbers	is	the
diffusion	flux	density	Φ	c	.	Let	us	evaluate	it	in	order	of	magnitude.

In	the	case	we	are	considering,	there	are	more	molecules	crossing	the	plane
in	the	positive	x	direction	than	in	the	opposite	one,	because	there	are	more
molecules	per	unit	volume	on	its	left	that	on	its	right.	If	all	the	molecules	were	to
have	the	same	velocity	υ,	the	molecules	crossing	a	section	in	the	unit	time	would
be	those	contained	in	a	volume	having	that	section	as	base	and	υ	as	height.	As



the	velocities	are	different,	υ	is	a	suitable	average,	which	we	shall	take	as	the
root	mean	square	υ	rms.	We	need	not	to	be	very	precise,	because	we	are
evaluating	orders	of	magnitude.	The	number	of	molecules	per	unit	volume	varies
with	x	and	we	must	decide	where	to	consider	it.	It	looks	reasonable	to	take	it	at	a
distance	on	the	left	of	the	surface	equal	to	the	mean	free	path,	because	it	is	there
that,	on	average,	the	last	collision	took	place.	The	flux	from	left	to	right	is	then	υ
rms	n	p1(x–l).	Similarly,	the	flux	of	molecules	from	right	to	left	at	x	+	l	is	υ	rms	n
p1(x	+	l).

In	conclusion,	the	net	flux	density	is	 .
Considering	that	the	mean	free	path	is	very	small,	we	can	write

Comparing	it	with	Eq.	(6.11),	we	can	write	it	in	the	form

We	immediately	see	that

	 (6.23)
where	we	have	neglected	the	factor	2,	as	we	are	considering	orders	of
magnitude.	In	other	words,	the	diffusion	coefficient	is,	in	order	of	magnitude,
equal	to	the	product	of	the	mean	free	path	and	root	mean	square	velocity.	For
example,	for	air	at	STP,	we	have	estimated	a	mean	free	path,	in	round	numbers,
of	l	≈	100	nm,	and	υ	rms	≈	500	m/s.	With	Eq.	(6.23),	we	evaluate
D	≈	5	×	10−5	m2s−1,	which	has	the	correct	order	of	magnitude	(remember,	we
quoted	diffusion	of	water	vapor	in	air	of	1.8	×	10−5	m2s−1	in	Sect.	6.4).	In	Sect.
6.4,	we	stated	that	diffusion	is	slower	in	liquids	typically	by	two	orders	of
magnitude.	Even	if	the	above	arguments	do	not	rigorously	hold	for	liquids,	they
are	sufficient	to	explain	the	difference.	In	liquids,	the	mean	free	path	is	on	the
order	of	the	molecular	radii,	two	orders	of	magnitude	smaller	than	in	gases	at
STP.

We	can	write	Eq.	(6.23)	in	terms	of	the	cross-section	using	Eq.	(6.21)

	 (6.24)
Considering	the	gas	as	ideal,	the	state	equation	is	 ,	where	n	is

the	number	of	moles.	We	write	it	as

	 (6.25)
Solving	for	n	p	and	substituting	in	Eq.	(6.24),	we	have



	 (6.26)
We	now	notice	that	we	have	neglected	our	consideration	of	two	different

gases	and	have	reasoned	that	they	were	equal.	Consequently,	it	is	not	clear	to
what	l	and	σ	refer.	However,	these	quantities	are	similar	for	different	simple
molecules	with	comparatively	similar	masses	and	sizes.

From	Eq.	(6.26),	we	learn	that	the	diffusion	coefficient	in	gas	is	inversely
proportional	to	pressure.	As	for	the	temperature	dependence,	we	must	consider
that	the	root	mean	square	velocity	(as	any	other	mean)	is	proportional	to	the
square	root	of	the	temperature.	As	a	consequence,	the	diffusion	coefficient	varies
as	T	3/2,	in	the	limits	in	which	the	cross-section	can	be	considered	constant.

Consider	now	the	thermal	diffusion	.	Considering	the	analogy	of	the
diffusion	processes,	we	can	directly	write

	 (6.27)
For	Eq.	(6.6),	the	thermal	conductivity	is	 ,	assuming	a	process	at

constant	volume.	It	is	convenient	to	have	the	molar	heat	instead	 ,
where	m	is	the	mass	of	the	molecule,	and	we	have	

.

For	Eqs.	(6.27)	and	(6.21),	we	get

	 (6.28)
The	result	is,	at	first	sight,	surprising;	as	neither	the	cross-section	nor	the

molar	heat	depends	on	density,	the	thermal	conductivity	of	a	gas	is	independent
of	density,	hence	of	pressure.	The	reason	is	the	following.	When	the	density
decreases,	the	number	of	molecules	contributing	to	diffusion	decreases,	but	their
mean	free	path	increases	and	with	it	the	contribution	to	diffusion	of	each
molecule.	One	might	take	this	argument	to	the	conclusion	that	if	the	conductivity
is	independent	of	pressure,	it	should	be	the	same	even	at	zero	pressure,	when
there	is	no	gas.	This	is	not	so,	because	in	our	arguments,	we	have	always
neglected	the	presence	of	confining	walls.	This	is	correct	if,	as	is	usually	the
case,	the	mean	free	path	is	much	smaller	than	the	distances	between	walls,	but
not	in	the	limit	above.

Equation	(6.28)	tells	us	that,	in	a	first	approximation,	the	thermal
conductivity	increases	with	increasing	temperature	as	the	root	mean	square
velocity,	namely	as	T	1/2.	Actually,	the	increase	is	somewhat	more	rapid,
because,	generally,	the	molar	heat	increases	and	the	cross-section	decreases	with
increasing	temperature.



6.1.

6.2.

6.3.

Finally,	we	consider	viscosity	.	Once	more,	we	do	not	need	calculation	and
can	exploit	the	analogy	we	observed	for	kinematic	viscosity	,	writing	directly

	 (6.29)
For	dynamic	viscosity,	we	have

	 (6.30)
We	see	that,	similar	to	thermal	conductivity,	dynamic	viscosity	of	gases	does

not	depend	on	pressure	(as	long	as	the	mean	free	path	is	smaller	than	the	size	of
the	container).	Again	similarly,	dynamic	viscosity	increases	with	temperature	as
T	1/2,	if	the	cross-section	is	constant,	a	little	more	rapidly	when	the	cross-section
decreases.

As	we	have	seen,	the	diffusion	coefficient,	thermal	conductivity	κ	and
dynamic	viscosity	η	are	strongly	correlated	quantities.	Two	(approximate)
relations	between	them	are	found,	one	from	Eqs.	(6.24)	and	(6.30)	and	one	from
Eqs.	(6.28)	and	(6.30).	They	are

	 (6.31)
We	finally	observe	that	the	viscosity	of	liquids	generally	decreases,	in	a

different	way	than	in	gases,	for	increasing	temperature.	This	is	a	consequence	of
the	relative	motions	of	the	molecules	being	easier	at	higher	temperatures.	The
viscosity	decrease	is	small,	but	appreciable,	in	the	low	viscosity	liquids	like
water,	while	being	much	larger	for	viscous	liquids,	like	honey	and	oils.

Problems

Two	equal	bodies,	each	with	thermal	capacity	C	=	500	J/K,	are	connected
by	a	bar	of	length	l	=	1	m,	section	S	=	5	cm2	and	thermal	conductivity
κ	=	20	WK−1m−1.	The	system	is	thermally	insulated.	The	temperatures	are
initially	different.	Find	the	time	τ	at	which	the	temperature	difference
became	1/e	times	the	initial	difference.

	
The	mean	free	path	at	STP	of	the	oxygen	molecules	is,	in	round	numbers,
l	=	100	nm.	What	is	the	mean	time	between	collisions?	Use	rms	velocity.

	
A	vessel	initially	containing	air	is	emptied	to	the	pressure	of	1.3	×	10−4	Pa.
The	air	temperature	is	T	=	290	K.	Assuming	a	collision	cross-section	of	the
molecules	σ	=	5×10−19	m2,	find,	in	order	of	magnitude,	the	molecule



6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

number	density	n	p	and	the	mean	free	path	l.

	
A	spherical	vessel	of	one	liter	volume	contains	air.	What	are	the	maximum
pressure	and	density	at	which	the	mean	free	path	(assume	l	=	70	nm)	is
larger	than	the	diameter	of	the	vessel?

	
Find	the	thermal	conductivity	of	hydrogen	gas	if,	under	the	same
conditions,	its	dynamic	viscosity	is	η	=	8.6	µPa	s.

	
The	coefficient	of	self-diffusion	of	nitrogen	under	normal	conditions	is
D	=	1.4	×	10−5	m2s−1.	Find	the	values	of	viscosity	and	thermal	conductivity
under	the	same	conditions.

	
Consider	carbon	dioxide	(molecular	mass	m(CO2	=	44)	and	nitrogen
(molecular	mass	m(H2	=	28)	at	the	same	temperature	and	pressure.	Find	the
ratios	between	their	self-diffusion	coefficients,	dynamic	viscosities	and
thermal	conductivities.	Assume	the	ratio	of	collision	cross-sections	to	be	

	and	the	molar	heats	to	be	 	and	 .

	
The	diffusion	coefficient	of	carbon	dioxide	in	air	is	D	=	1.4	×	10−5	m2s−1.
What	is	its	value	at	100	°C?	Consider	the	cross-section	constant.

	
The	thermal	conductivity	of	carbon	dioxide	at	0	°C	is
κ	=	D	=	1.45	×	10−2	Jm−1K−1	1.45	×	10–2	J/(mK).	What	is	its	value	at
100	°C?	Consider	cross-section	and	specific	heat	to	be	constant.

	
The	dynamic	viscosity	of	air	at	20	°C	is	η	=	18	µPa	s.	What	is	its	value	at



−20	°C?	Consider	the	cross-section	constant.

	



1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

Answers
The	buoyancy	on	any	quantity	of	water	in	air	is	about	one	thousandth	of	the
weight,	because	the	density	of	water	is	almost	one	thousand	times	the
density	of	air.	On	10	g,	this	makes	about	10	mg.	We	must	do	the	correction.

	
The	larger	moves	faster,	because	weight	and	buoyancy	are	proportional	to
the	third	power	of	the	radius,	while	the	viscous	drag	is	proportional	to	its
square.

	
10	t.

	
The	period	decreases,	as	the	buoyancy	diminishes	the	weight,	and	we	have

	instead	of	 	.

	
They	are	periodic	but	not	harmonic	because	the	resultant	force,	weight	plus
buoyancy,	is	not	proportional	to	the	displacement

	
υ		=	3	m/s.

	
υ		=	1.7	m/s.

	
We	tentatively	assume	the	flow	to	be	laminar.	The	mean	velocity	on	the
section,	given	by	Eq.	(	1.42	),	is	υ		=	0.6	m/s,	corresponding	to	Re		≈	600.
Hence,	the	hypothesis	of	laminar	flow	is	correct.	The	volumetric	flow	rate
is	 	.



1.9.

2.1.

2.2.

2.4.

2.5.

2.6.

2.7.

	
(a)	The	resultant	force	is	zero	because	the	velocity	is	constant.	The	acting
forces	are:	the	weight,	vertical	downward,	the	drag,	vertical	upward,	and
the	buoyancy.	The	latter	is	negligible,	because	the	density	of	the	air	is	much
smaller	than	that	of	the	particles.	The	force	equilibrium	equation	is	then

	.	Solving	for	r	,	we	have	r		=	15.8	µm.	(b)	The

Reynolds	number	is	Re		=	0.19,	hence,	the	regime	is	laminar	and	the	Stokes
law,	which	we	have	used,	holds.

	
The	heat	released	by	water	is	cm	(60°–20°),	where	c	is	the	known	specific
heat	of	water,	and	is	equal	to	the	heat	absorbed	by	the	calorimeter	c	cal
(80°–60°).	From	here,	we	get	c	cal	.	This	is	the	standard	procedure	for
obtaining	the	so-called	water-equivalent	of	the	calorimeter.

	
In	the	colder	room.

	
	.

	
ρ		=	1.29	kg	m	−3	.

	
µ		=	28.9	g/mol.

	
The	internal	energy	grows	in	processes	(a)	and	(b),	is	constant	in	(c),	and
decreases	in	(d)	and	(e).
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2.9.

2.10.

2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

The	heat	exchange	with	the	environment	is	zero,	and	the	external	work	is
zero,	hence	the	internal	energy	does	not	vary.

	
2	Mgh		=		cmΔT	,	where	c	is	the	water	specific	heat	(	c		=	4186	J	kg	−1		K	−1
).	ΔT		=	1.16	×	10	−2		K.	This	is	very	small.	In	practice,	the	drop	of	the
weights	must	be	repeated	many	times.

	
Q		=	−2.1	kJ.

	
The	sum	of	process	1	and	of	the	inverse	of	2	is	a	cycle.	Process	2	being
reversible,	the	heat	exchanged	in	the	inverse	process	is	−	Q	2	.	The	internal
energy	does	not	vary	in	the	cycle	and	we	have	 	.

	
(a)	and	(b)	Q		=	−200	kJ.

	

	
	,	 	,	 	.

	
(a)	 	;	 	and	γ
	=	1.33.	(b)	ΔU		=	5	kJ,	(c)	W		=	1.65	kJ.

	
(a)	ΔU	=		0;	(b)	W	=		139	kJ;	(c)	Q	=		139	kJ.



3.1.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

	
	,	 	.	Hence,	 	.

	
The	number	of	moles	is	n		=	400/32	=	12.5.	 	.	We
know	all	but	T	C	.	To	find	it,	start	from	the	efficiency.	The	absorbed	heat	is

	and	η		=		W	/	Q	AB		=	0.4.	Hence,

	and	W	DA		=	−52	kJ.

	
(a)	and	(b)	increases;	(c)	constant.

	
Yes,	if	the	process	is	irreversible.

	
(a)	The	entropy	variation	is	the	same;	(b)	No.

	
A	and	C	are	on	the	same	adiabatic	curve.

	
	.

	
(a)	8.6	J/K,	(a)	14.4	J/K.

	
It	increases	by	20	J/K.



3.13.

3.14.

4.1.

4.2.

(a)

(b)

(c)

4.3.

4.4.

	
	.

	
	.

	
Pressure	would	increase.

	
Water	would	transform	into	an	ideal	gas.	The	number	of	moles	is	n
	=	1000	g/(18	mol/g)	=	55.6.	Hence,	the	pressure	p		=		nRT	/	V		=	138	MPa.

	

	

	

	
	

	.
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4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

	
Q		=	0	and	W		=	0	Hence,	 	.	With	C	V
	=	(5/2)	R	,	∆T		=	−5.8	K.

	
	;	Q		=		ΔU		=	86.4	J	(	a		=	4		a	mol	).

	
(a)	∆U		=	0.26	kJ	(0	for	an	ideal	gas);	(b)	4.14	kJ	(96	%	of	the	ideal	gas);	(c)
Q	=	4.4	kJ;	(d)	∆S		=	25.4	JK	−1	(1.02	than	the	ideal	gas).

	
The	substances	with	triple	point	pressure	larger	than	the	atmospheric
pressure.

	
The	specific	volumes	are	the	reciprocals	of	the	densities.	(a)	V	l		=	10	−3		m
3		kg	−1	;	(b)	V	V		=	1.25	m	3		kg	−1	V	v		=	1.25	m	3	/kg.

	
	.

	
The	molar	latent	heat	for	vaporization	is	Q	ev	=31.2	kJ	mol	−1	.	P	2
	=	86	kPa.

	
(a)	 	,	(b)	Q	12		=		mQ	v	,	(c)	 	,
(d)	 	,	(e)	 	.
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4.15.

4.16.

4.17.

4.18.

5.2.

5.3.

	
One	point	on	the	liquid-vapor	coexistence	curve.

	
A	hole	can	be	considered	a	capillary.	Let	r	be	the	curvature	radius	of	the
drop	forming	under	a	hole.	The	drop	detaches	when	the	capillary	pressure
2	τ	/	r	balances	the	hydrostatic	pressure	ρgh	.	The	maximum	internal
pressure	corresponds	to	the	minimum	possible	radius,	which	is	the	radius
of	the	hole.	Then,	 	.

	
The	applied	overpressure	p	must	be	at	least	equal	to	the	sum	of	the
hydrostatic	pressure	ρgh	and	the	capillary	pressure	2	τ	/	a	.	Then	p
	>	488	Pa.

	
	(OK,	it	is	less	than	the	length	of	the	capillary).

	
The	vertical	forces	are	the	weight	mg	downward,	the	buoyancy	a	2	ρgh
upward	and	the	force	due	to	the	surface	tension	 	,	where	θ	is	the
contact	angle.	In	both	given	cases,	its	magnitude	is	4	aτ	;	in	case	(a),	it	is
downward	and	h		=	6.5	mm,	in	case	(b),	upward	and	h		=	4.6	mm.

	
M		=	0.54	mg.
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5.5.
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5.10.

5.11.

5.12.

N	/	V		=	2.7	⨉	10	25		m	−3	.

	
(a)	 	,	(b)	 	,

	
(a)	T		=	290	K;	(b)	N	/	V		=	2.5	⨉	10	25		m	−3	.

	
(a)	 	;	(b)	 	.

	
υ	p		=	417	m/s;	υ	rms		=	510	m/s.

	
Classically,	there	are	two	rotational	degrees	of	freedom.	Hence,

	and,	if	m	N2	is	the	mass	of	the	nitrogen	molecule,	we	have

	.

	

	
(a)	37	%;	(b)	5	%.

	
Use	Eq.	(	5.35	),	modified	to	take	into	account	the	presence	of	water,	i.e.,

	.	We	get
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5.14.

5.15.

5.16.

5.17.

5.18.

6.1.

6.2.

	
	,	(a)	p		=	0.55	p	0	;	(b)	p		=	0.34

p	0	;	(c)	p		=	01.27	p	0	;

	
(a):	(0,	6):	Γ		=	1,	P		=	1/64	=	0.6	%	(64	is	the	sum	of	all	probabilities	Γ	);
(1,	5):			Γ		=	6;	P		=	9.4	%;	(2,	4):	Γ		=	15;	P		=	23.4	%;	(3,	3):	Γ		=	20;	P
	=	31.3	%;	(b)	P		=	8.1	%.

	

	
	,	

	
(a)	 	;	(b)	No,	it	is	too	small,	

	
It	does	not	vary	if	the	process	is	reversible,	but	increases	if	it	is
irreversible.

	
τ		=	(	Cl	)/(2	κS	)	=	6.94	h.

	
τ		=	150	ps.
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6.5.

6.6.
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n	p		≊	4	×	10	16		m	−3	,	l		≊	100	m.

	
ρ		=	3	×	10	−7		kg	m	−3	,	p		=	0.03	Pa.

	
κ		=	0.090	W/(m	K).

	
η		=	18	µPa	s,	κ		=	1.3	×	10	−2		W	m	−1		K	−1	.

	

	.
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